However, we observed that populations remained high throughout the year and that they were similar in the sand-based and soil rootzones. We have found similar populations in common Bermudagrass with and without compost additions (15 or 90 tons per acre), sand-based putting greens under dwarf Bermudagrass varieties and even under common Bermudagrass treated with molasses at 16 times the suggested rate of the vendor.

I hope to dispel the notion that sports turf is "lacking soil microbes" and that microbial preparations (microbial inoculants, small amounts of carbon sources like molasses or sugar, etc.) are needed to restore them.

While the numbers of microbes in soil are no doubt impressive, it is the biomass (weight) of the microbes that truly indicates their abundance. Though not all soil microbes are actively growing at any given point in time, a large biomass indicates great potential for the many biochemical activities of the microbes under appropriate conditions for their growth! A healthy stand of grass can literally contain tons of soil microbes! Thus, we know that soils with large active populations do in fact mediate lots of beneficial processes in the soil.

We are only at the beginning of our understanding of the microbial biodiversity in soils and sand-based systems. Molecular biology research from the past two decades suggests there may be as many as 4000-13,000 species of bacteria in a single gram of soil. Moreover, we have managed to culture only a very small percentage of these in the lab. The challenges of understanding and harnessing this diversity are many but they must be understood in order to determine if we can actually manipulate soil microbial populations to our benefit under "real world" conditions!

What do soil microbes really do?

The fact is that they do all sorts of things in the soil when active, but mostly, they just "hang around" waiting for something to eat. Contrary to what some might think, soils are not seas of organic soup. Rather, they tend to be limiting in supplies of organic carbon to feed microbes and the competition for that carbon is fierce. This is one reason why the rhizosphere, the zone of soil immediately around a

WE ARE ONLY BEGINNING TO UNDERSTAND MICROBIAL **BIODIVERSITY IN SOILS AND** SAND-BASED SYSTEMS

plant root, is such a "hot spot" for microbial growth. Roots, as it turns out, give off organic carbon in a variety of forms (sloughed cells, exudates, etc.) that are exploited by the nearby microbes.

So, one of the things that microbes do in soil is to reprocess these materials into available forms (i.e., mineralization) and into microbial cells and humus (recalcitrant, stable organic matter). They are also involved in many other processes too numerous to describe here in detail. For example, many soil bacteria can fix atmospheric nitrogen (N2) in order to grow in areas where available soil N is scarce. Note, that I said where N is scarce! They're "smart enough" not to rely on N2 fixation when soil N is sufficient because the process of biological N2 fixation is energetically very "expensive" for them.

A common misconception is that one can apply small numbers of nitrogen-fixing bacteria to turfgrass and they will supply nitrogen for the plants. While some N2 fixation might occur, it is unlikely that one could achieve a healthy stand of turfgrass on such miniscule amounts of nitrogen. Perhaps more likely than N2 fixation in turfgrasses is the process of denitrification, the microbial conversion of plant-available nitrate to gases such as nitrous oxide (N2O) and dinitrogen (N2). This process occurs when soils become saturated and oxygen is depleted within the soil/sand matrix. Then, denitrifying bacteria convert the nitrate to gases that escape from the soil taking with them one of the most expensive turf management inputs, namely, fertilizer nitrogen.

These are just a few of the processes brought about by microbes in soil. The discussion above about the abundance and functions of soil microbes leads us to the final question: What do you need to do for soil microbes?

Circle 137 on card or www.oners.ims.ca/5062-137

green science

This is probably the question that generates the most confusion among turfgrass managers as this is an area where I see a lot of information not based on the science of what we know about soil microbes. It is in answers to this question that we find much misinformation! A common misconception about soil microbes is that using synthetic fertilizers and other management inputs (pesticides, etc.) somehow kills the soil microbial population leading to "dead" or "sterile" soils. The Internet abounds with information (in some cases posted by well-meaning individuals and, in others, by persons selling miracle cures) that is just patently false! Take the following statement gleaned from the Internet for example:

"Chemical fertilizers will eventually destroy even the best soils by killing the beneficial organisms that plants rely on to gather nutrients and moisture. Growers are then forced to pour on larger and larger amounts of expensive petroleum-based fertilizers to maintain yields, but the overdoses create unbalanced "dead soil." (Anon.) A recent search of the World Wide Web for the term "dead soil" returned

Excellent Salt Tolerance • Darker Green Color Than Bermudagrass
Tolerates Gray Water, Effluent and Many Medium-to-Poor Quality Water Sources
Low Fertilization Requirements • Handles Wide Range of Soil pH Levels: 4.0-9.8
High Tolerance to Salt Spray, Water Logging and Periodic Inundations
Minimal Pesticide Requirements• Good Rooting in Sandy, Clay or Muck-Type Soils
Can Be Overseeded with Bentgrass-Ryegrass-Alkaligrass Blends
Root Growth & Functionality Still Maintained in 40-55°F Soil Temperature Range
Excellent Low Light Intensity Tolerance

Providing Excellent Footing & Soft Landings for Professionals, Amateurs and Beginners

Circle 150 on card or www.oners.ims.ca/5062-150

96,000 hits.

While it is true that fertilizers may inflict some harm on microbes directly exposed to granules or to anhydrous ammonia, the overall effect of fertilizer applications is to markedly increase microbial numbers and activity in soil through increased plant growth. We have known this for decades! As I mentioned earlier, the majority of soil microbes require organic carbon to grow and produce new cells. In grass systems, the vast majority of organic matter is produced from decomposing roots and leaves. Fertilization increases the amount of organic substrates available to soil microbes by increasing its source, the grass plants themselves. Thus, rather than producing "dead soil," judicious use of fertilizers invigorates soil microbes by allowing plants to produce more resources for them!

Remember though, all management inputs must be used carefully and correctly. Too much of a good thing can produce negative consequences. Excessive fertilizer applications will likely lead to enhanced runoff and leaching and the undesirable environmental consequences that go with those processes.

So, do you need to add "beneficial microbes" to the soil to make it function properly? That's highly unlikely. Many studies of turfgrasses, whether in sports fields, golf courses or home lawns, have shown that soil microbial populations are not compromised by normal management practices. The best thing that you can do to "manage" the soil microbes under your care is to grow a healthy stand of turf and pay close attention to the condition of the soil or rootzone supporting it. Paying attention to the agronomics of grass culture, fertilization, aerification, drainage, etc., will insure that the microbial populations are not being adversely affected. ST

David A. Zuberer, Ph.D., is with the Department of Soil and Crop Sciences, Texas A&M University, College Station, TX. He can be reached at d-zuberer@ag.tamu.edu.

welcome to the future of green replication

LaserLeveling

When it comes to green replication, not much has changed over the past several years...until now.

Introducing the entirely new GradeMaster 3D Grading System. This box scraper automatically restores greens and other contoured areas to their original state, allowing you to maintain and refinish with unparalleled accuracy and efficiency.

Using Trimble machine control technology, the GradeMaster 3D allows contractors to topo the existing surface and recreate the original design once work is completed.

The GradeMaster 3D offers a comprehensive, automated process to return greens to their original design specs.

If you would like to learn more about this revolutionary grading system, click on www.laserleveling.com for more information.

800.622.5777 www.laserleveling.com

Preventing summer stress

BY JEFF HAAG

aintaining intensively manicured turfgrass during the summer months, whether it is an athletic field or golf tee or green, becomes a real challenge due to a complexity of problems that have the potential to cause the turf to develop stress. Around 1993 and 1994 several highly respected

researchers referred to a decline in bentgrass golf greens as "summer bentgrass decline," to which no single pathogen was ever attributed. It was suggested that a correlation existed between Lanzia, Rhizoctonia, Magnaporthe poa, Anthracnose, and Phythium diseases as being the main culprits to the decline of turf during summer months.

There is no doubt that these diseases can become a serious problem during the summer, and will cause turf to decline.

We suggest, however, that there are other underlying causes that cause turf to decline at this time of the year, and that the diseases that can be attributed to the decline of the turf are the end results. We also believe that most causes can be prevented.

Probably the number one cause of turf decline in the summer months is a result of free radical damage in combination with high soil and air temperatures. Just what are free radicals? Typically, stable molecules contain pairs of electrons. When a chemical reaction breaks the bonds that hold paired electrons together, free radicals are produced. Free radicals contain an odd number of electrons, which makes them unstable, short-lived, and highly reactive. As they combine with other atoms that contain unpaired elec-

trons, new radicals are created, and a chain reaction begins.

The next question is, What causes these molecules to become unstable? The most common one would be the one that turfgrass managers do the most, mow. Mowing is a destructive process that wounds grass plants and increases the susceptibility of grass plants to other stresses. Formation of reactive oxygen species is a typical response of plants to wounding. The obvious prevention method would be to constantly check to make sure that blades, reels, and bedknives are as sharp as possible.

Other stresses that lead to the development of free radicals are environmental, such as drought, heat, and ultraviolet light, or chemical, such as herbicides. These stresses cause the reactive oxygen molecules hydrogen peroxide, superoxide, singlet oxygen, and hydroxyl radicals that can damage lipids, proteins, and DNA inside cells.

At supraoptimal temperatures, photosynthesis is extremely sensitive and is the first metabolic process that is damaged. High temperatures possibly cause an imbalance between photosynthesis and respiration processes and carbohydrate depletion, particularly for turf that is mowed daily at a low mowing height, such as golf greens.

Low mowing when temperature is high during summer imposes additional stress on the turf by removing large amounts of leaf area that are used for photosynthesis, while respiration continues. Not only are metabolic processes reduced at high leaf temperatures, but also moisture stress, from increased transpirational losses, results in stomatal closure, which decreases the supply of C02 to the chloroplasts slowing photosynthesis. Under optimum temperature conditions, however, plants maintain a balance between producing and scavenging active oxygen species.

Prevention

What can you do about free radical damage affecting turfgrass? One idea is applying biostimulants because of their antioxidant properties. Various biostimulant products on the market contain a-tocopheral and ascorbic acid. When these two antioxidants become concentrated in the chloroplast they protect the photosynthetic apparatus photosystem II when plants are subjected to environmental stresses by

scavenging excess reactive oxygen species. Another benefit of biostimulants is their hormone containing property of cytokinins that is found in seaweed extract from ascophyllum nodosum, a known growth hormone that promotes cell division. Thus, the plant not only receives antioxidants to combat free radicals, but also has a propensity for deeper root growth, as long as some other factors are dealt with which will be discussed later.

Many researchers over the years have demonstrated the positive effects plants receive from the application of biostimulants containing cytokinins. Turfgrass managers must, however, use caution that they are not applying cytokinins when cytokinin content is operating at a normal level since the addition of cytokinin applications at these times have actually been found to be detrimental. It will vary from region to rthwest Ohio typically apply them from

region, but given a normal year, we in northwest Ohio typically apply them from mid-May until the second week of September.

Humic acids are another compound that has shown to contain antioxidant properties, which promote the scavenging of free radicals. The other benefits of humic acids are that they have also increased the availability of micronutrients, phosphate, and potassium, and enhance the chlorophyll content of plants.

Several nutrients seem to also play a key role in preventing turf decline during the summer months, including calcium, which along with cytokinins, plays an essential role in cell division and elongation. Heat tolerance with the use of calcium is known to exist, but is still unclear as to how it is regulated. Some suggest that it may be involved in signal transduction, and gene expression under oxidative and heat stress. Others have found that calcium increases antioxidant enzyme activities and reduces lipid peroxidation of cell membranes. Calcium has also been shown to regulate guard-cell turgor and stomatal aperature. Although no research has shown calcium to prevent pythium, it has been demonstrated to possibly reduce the severity of

YOU MAKE MONEY MOWING, NOT CHANGING BELTS. YOU SAVE MONEY RUNNING DIESEL, NOT GAS. YOU MAKE MONEY. PERIOD.

Yes. You're a ZD owner.

We know what professionals really want in a zero-turn mower. That's why we designed the Kubota ZD Pro with our own fuel-efficient diesel engine, a 7-gauge steel fabricated deck and a shaft drive deck and transmission that's practically maintenance free. After all, it's easier to make money when your mower pays you back.

- 21 HP, 25 HP and 28 HP diesel engines
- 60" and 72" ZD Pro[™] decks

Kubota. EVERYTHING YOU VALUE

Financing available through Kubota Credit Corporation. For product and dealer information, call 1-888-4-KUBOTA. ext. 408 or click on **www.kubotaZ85.com.**

green science

pythium by inhibiting the activator of pectolytic enzymes, thus, protecting the cell walls.

Silicon is another nutrient that has shown great promise in the past 3 years as a stress-preventer. This is most likely due to three factors. First, when silicon is present in leaf tissue the concentration of sodium in the leaf tissue is decreased by up to 50%. Second, when silicon is present in the plant tissue it prevents physical penetration by some insects and makes plant cells less susceptible to enzymatic degradation by fungal pathogens. Third, structural functions of silicon include compression resistance in cell walls, which increases traffic resistance.

Potassium is another vital nutrient in helping combat summer turf decline, and is probably one of the most underused nutrients in the turf industry. Its greatest attribute

is that it helps strengthen cell walls inside the plant, which in turn allows the plant to hold up to traffic better, tolerate extreme heat, and help the plant require less water. Keep in mind, however, that potassium can have a negative effect on Magnesium if used in excessive amounts. As an example, we generally foliarly apply 1/10 of a pound of potassium every 2 weeks during the summer months using Floratine's 4-4-16 Tiger Turf, and then use PhlexMag at a .75 ounce per 1,000 sq. ft. rate every 2 weeks.

Although not considered an antioxidant, amino acids play a key role in the prevention of summer decline. This can be attributed to at least three functions, possibly more, that amino acids impart on the plant: osmotic adjustment, water-stress tolerance of plants, and helping prevent chlorophyll degradation. Chlorophyll breakdown occurs to an oxygenolytic opening of the porphrin cacrocycle of pheophorbide (pheide a) followed by a reduction to yield a fluorescent chlorophyll catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase and red chlorophyll catabolite reductase.

Although we haven't seen any published research on it, we have experimented with on our greens the past 2 years with excellent results by applying an amino acid product called ProteSyn from Floratine every 2 weeks; we then add an application of Nutramax's MacroSorb Foliar on a biweekly rate. We either apply the MacroSorb Foliar with a fungicide to allow it to get into the plant easier if we are applying one, or apply it by itself. We feel that it is important to keep amino acid levels up during the summer because photosynthetic

rates are generally lower during this time, and amino acids are known to help play a key role in photosynthesis.

Another amino acid product we have found very beneficial on our golf greens and our football field comes from the application of Nature Safe's organic fertilizers. We use Nature Safe for four reasons: its high amino acid content, its extremely low sodium index, its slow release form of nitrogen so that we get no surge growth, and finally, is its well documented ability to increase microbial populations that aid in triggering the plants' own defense mechanism in fighting off fungal pathogens.

Phosphorous is another key nutrient in the summer that becomes critical. Why? Because phosphorous is a required nutrient for plant health, but there are several

HOW TO WIN THE FOOTBALL TURF

Any turfgrass can "talk tough," but **Riviera** has the proof you demand:

- Ranked #1 over all, five years running, in the national turfgrass evaluation trials
- Winner of the turfgrass Breeder's Cup
- Rigorously tested and continually proven in leading U.S. university studies
- Rated #1 for cold tolerance over all the rest

All of which is your clear-cut assurance that **Riviera** is:

- Proven superior for quick grow-in time and remarkable recovery rate from damage and abuse from play
- Top-ranked for quality, color, texture, uniformity and density
- A proven leader in wear tolerance, cold tolerance and drought tolerance

And **Riviera bermudagrass** is now available in both seed and sod:

• You now have a choice of seed for value and quick establishment or sod where the application requires quick turnaround. Either way you win the football turf war, with its toughness, resilience and overall beauty. Check with . V us for the nearest authorized dealer or sod grower in your area.

JOHNSTON SEED COMPANY he Cold-Tolerant Bermudagrass Experts

800-375-4613

Simply Best, Test After Test.

green science

Riviera has the proof you demand:

products available that can be used instead of the fungicide Aliette in the prevention of pythium. We use a product from Helena Chemical called Elemax Super Foliar Phosphite. There are several other foliar phosphorous containing products that will work as well. We not only get pythium prevention protection, but the plant also gets the nutritional benefit, and it is a lot cheaper per l,000 square feet versus Aliette.

Manganese serves many functions within the plant, but the two most critical for summer decline prevention are the important process it plays in helping develop chlorophyll, and the second being the proper development of respiratory enzymes. As stated earlier, respiratory rates become higher in the summer, which also has a negative effect on carbohydrates.

Need oxygen

Another critical process in helping to avoid summer turf decline is keeping a good supply of oxygen in the soil. This is best done through various types of aeration. Aeration also allows for gaseous exchange, water movement through the soil profile, reduction of compaction and thatch, providing oxygen to promote greater microbial function, as adequate soil-oxygen levels are extremely important for soil micro-organisms, and controlling the amount of organic matter accumulation.

We use various forms of aeration techniques throughout the year on our golf greens. We try to get some form of oxygen down to our roots monthly from April through October. In April and May we use 7-inch bayonet tines due to their surface area and their ability to get down that far. In June, July, and August we use 5-inch needle tines. These cause no more surface disruption than a hydroject aeration.

Once they have been mowed you can't even notice that it has been done. Obviously if it is extremely hot, dry, or both common sense tells us to hold off until conditions are conducive to performing it. In this region of the country there is usually at least a 1-2 day window of opportunity to do this. We also perform one hydroject aeration in July and August.

In the fall we core aerify with hollow tines, remove the cores, and topdress them to fill the channels in, then fertilize them with a granular fertilizer to start building

up carbohydrate reserves for the winter. On our athletic fields we core aerify as opportunities present themselves based on field use and weather conditions. This past season we were able to core aerify the football field six times, five times before the start of games, and once during the season. We were also able to deep time the field during the season once using 10-inch solid tines. If we experience a very hot summer then we use 5-inch slicing knives on the athletic fields to keep oxygen in the root system.

One important process that we do every year before we make any kind of application that is extremely important is soil testing. It is absolutely imperative that you find out what nutrients are available from the soil, and which ones are tied-up in the soil. Whichever nutrients are not available then they need to be addressed as to why they are not so that necessary soil amendments can be applied to improve their availability, which, in most cases, is going to take time, perhaps several years, to improve them. The chosen method for bypassing nutrient unavailability is to apply nutrients foliarly.

These are some of the practices that we have used to help prevent summer decline, strengthen overall root systems, and improve plant health. The past 2 years we have only had to hand syringe our greens once, which has to be a direct correlation to the health of our greens. This past summer (2004) we consistently had 12-14 inch roots on our golf greens in June, July, and August, and 11-12 inch roots on our football field. We were able to cut our fungicide applications by half as compared to previous years on our golf greens, and made only two fungicide applications during the summer on the football field. This year we plan on cutting our fungicide applications by half as we normally would apply on our greens. Root systems can grow during summer months instead of experiencing root dieback, which can be a common problem typically encountered during this time of year.

Jeff Haag is Head Groundskeeper and Golf Course Superintendent at Bowling Green University in Ohio. He can be reached at jhaag@bgnet.bgsu.edu.

If Your Business is Sports Fields, You Better Be Ready To Play

Floyd Perry, owner of GMS in Orlando, knows Sports Fields better than just about anyone. So what seed does he use for his clients?

"From May through September, we use Pennington's Bermuda Triangle because it allows our fields to repair themselves with minimum oversight and budget. And from December through March, we use Pennington Pro Select Rye because it protects the Bermuda Triangle grass and gets us through extensive foot traffic during spring sports."

So what is Floyd's reply when asked about recommending Pennington to others. "I already do - anytime someone asks for my suggestion. There has never been any disappointment with their seed or their service. They have always been a pleasure to work with."

Floyd Perry's business relies on Pennington Seed - shouldn't you do the same?

For info, e-mail: sportturf@penningtonseed.com, call 1-800-285-SEED or visit: www.penningtonseed.com

SPORTSTURF • http://www.greenmediaonline.com

Your Reputation is on the Line.

The Difference is Clear!

Graco FieldLazer uses airless spray technology to atomize paint into small particles – giving you brighter, longer lasting lines with less paint.

Pressure Pots use low pressure technology.

FieldLazer[™] - the NEW Standard for Excellence in Sports Field Marking!

The NEW FiledLazer[™] Sports Field Striper from Graco delivers the highest quality lines with ease. Using advanced airless pumping technology, FieldLazer atomizes your turf paint, breaking it up into smaller particles. The individual blades of grass

get painted with a more uniform coverage, causing the paint to stay on the grass – instead of falling to the ground below. Get ready to apply brighter, longer lasting lines – all while using less paint.

Circle 143 on card or www.oners.ims.ca/5062-143

PROVEN QUALITY. LEADING TECHNOLOGY.

Upgrade your fleet for Fall NOW by calling 1-800-690-2894 or visit us on the web at www.graco.com for a video demonstration of the outstanding quality lines FieldLazer creates.

Organic product veteran speaks out

Interview with Robert Riley, founder of Green Pro Services, Inc.

Circle 144 on card or www.oners.ims.ca/5062-144

SPORTSTURF: What got you started working with organic products?

Robert Riley: When I used chemical products and methods some 30 years ago, I realized that the turf was not responding the way I thought it should. The root structure was never very good; thatch was a problem, as were diseases. In fact, I recorded that it took more and more effort and money to maintain the turf. It got to the point that every lawn had to be plug aerated and dethatched every year.

ST: Is this what made you move into organics?

RR: As I did more and more research, the fundamentals of soil biology, plant nutrition, and the relationship between the two became very clear to me, and explained why I was having problems with diseases and why I couldn't get a good root system. By pulling together and organizing the available research, plus my observations on lawns, I was able to develop the principles for designing organic turf care products and procedures. Since then, it has been an ongoing process of development, testing, refining, re-testing, etc.

ST: Organics have been touted and tried before with less than acceptable results. What makes your products different?

RR: There are some fundamental differences. First, there has to be the recognition that turning to organics is not just "using" organics. Rather, it is gaining the knowledge of how the earth's natural systems work, and then using specific materials, timed to work in concert with these established natural systems. The commonly used materials available today, typically animal byproducts can't reliably or effectively do the job.

ST: Isn't organic "organic"?

RR: No. Organic products are either animal organics or plant organics. Some organics, sewage sludge for instance, can be very high in heavy metals, which are somewhat toxic. Cow manure can contain weed seeds. It makes a difference whether they are completely or only