roadsides. Healthy grass is an aesthetic asset and a growing body of scientific evidence points to positive environmental and health contributions from lawns and other turfgrass areas. While turfgrasses are typically thought of for recreation and aesthetic value, they also provide a valuable environmental service by preventing soil erosion. As a permanent vegetative cover, turfgrass can reduce runoff from rainfall, improve soil absorption and infiltration of water, and filtering contaminates from polluted water. Furthermore, recent research indicates that turfgrass systems help rid the atmosphere of greenhouse gases, like carbon dioxide (CO₂), which contribute to the global warming.

To meet the nation’s demands for water resources, the focus must be on how to use water more efficiently without sacrificing environmental quality. This objective can be achieved through proper selection and installation, and integrating turfgrass management practices which accentuate a plant’s natural ability to survive, despite a temporary deprivation of required resources (e.g. nutrients and water).

The Best Management Practices (BMPs) for turfgrass water conservation can be employed by all levels, from the well trained turfgrass professional to the homeowner. The BMPs are basic agronomic tools which will improve the overall health of the turfgrass plant and, in turn, will condition the grass to better withstand seasonal and prolonged drought. A few BMPs specific to turfgrass water conservation are:

BMP 1 – PROPER TURFGRASS SELECTION

Selecting the proper turfgrass is perhaps the most important factor in planning, planting, and maintaining a lawn for water conservation. A properly selected grass species or cultivar is more likely to thrive and need fewer inputs (e.g. water, fertilizer, pesticides, etc.). Turfgrass selection should be based on environmental conditions, turfgrass quality or appearance desired, and maintenance requirements. Environmental conditions to consider include temperature and moisture, shade adaptation, soil pH and fertility. It is also important to realize that all turfgrasses have good and bad features. Thus, selection should be based on which turfgrass most nearly meets the criteria considered. Using grasses which have been genetically bred for an intended purpose or geographic region further enhances the turfgrass plant’s ability to survive specific stresses.

BMP 2 – SOIL AMENDMENT

Improvement in either the chemical or physical characteristics of the soil can reduce turfgrass irrigation needs by enhancing infiltration of rainfall, increasing soil moisture retention, and promoting deeper rooting to reduce water leaching beyond the rootzone. To improve water conservation, amending native soils prior to planting can be beneficial during the establishment process and for long-term sustainability of the landscape. The water and nutrient holding capacity of the sandy soils have different needs than clayey soils and, therefore, need to be modified or managed accordingly. Sandy soils have little moisture or nutrient holding capacity. While the addition of some clay can improve water and nutrient holding capacity, it makes the soil more prone to compaction under traffic and normal use. In general, changing textural (percent sand, silt, and clay in a soil) and physical characteristics are more difficult than modifying the chemical characteristics, yet, these changes can be made to improve soils for the purpose of water conservation. Furthermore, the organic matter content can have a tremendous affect on moisture and nutrient retention.

You want deeper roots with more soil volume to explore for water and nutrients. Organic amendments improve the physical and chemical properties of the soil. They not only help the soil hold water and nutrients, they also improve water movement throughout the soil.
Subscribe today to choose the version that fits your Lifestyle

- Available one week prior to the print version
- **BONUS:** Expanded content
- Page for page replica of the print version
- Read content instantly – no downloading required
- Hot links to advertisers websites
- Save a Tree – every page you read online is one that didn’t go through the paper mill.

Digital issue not for you?
You can subscribe to either version
– simply click on the link below
to claim your **FREE 1-year subscription**

NOW IN iPad FORMAT

- iPad • Mobile • Print
www.sportsturfonline.com/subscribested
BMP 3 – PROPER IRRIGATION

Each unique microclimate, or zone, within the landscape should be irrigated separately according to the needs of each zone. Allow plant factors to indicate a need for supplemental water. Apply only the amount of water the turfgrass needs to wet the rootzone. For many plants and crops there are growth periods when water is critical to physiological and reproductive processes. However, for most homeowners and turfgrass managers fruit set and seed-production are not important processes. Basically turfgrass needs water to maintain growth. The exception to this is during establishment where water requirements would be the greatest. Once established, turfgrass requires relatively little water for survival. In fact, research conducted in throughout the US supports the recommendations of established turfgrass requiring approximately 1-inch of water per week during the growing season.

A positive and proactive approach to water conservation is essential for the sports field industry within each state. The best approach is one used for other environmental issues, BMPs. The following elements are key to fostering the BMPs approach at the regulatory level.

- Define what is meant by BMPs for water conservation on sports fields for the understanding of the field manager and facility staff, as well as, for that of regulatory agencies, environmental groups, and the general public.
- Actively strive to gain acceptance for this approach in ordinances, regulations and public policy.
- Adopt and implement a BMPs approach on our sports fields, not just as a general concept but as a daily operating policy.

BMP 4 – MANAGE EXTRINSIC STRESSES

To reduce water use, maintain turfgrass stand density, and promote survival during periods of drought stress, wear must be minimized. A thinned weaken turfgrass will require more water for basic maintenance of physiological processes and recovery than a turfgrass which has ample cover despite being drought stressed. Proper management of extrinsic stresses, like traffic and plant competition, aid in reducing water use by maintaining turfgrass stand density and promoting survival during periods of drought stress.

Water conservation in all areas of water use, indoor and outdoor, is becoming more critical. But through proper agronomics and judicious irrigation, landscapes can be maintained during periods of drought. Fortunately, the Southeastern US will only experience periodic drought and environmental conditions will eventually change. When rainfall returns, established turfgrasses will typically resume growth and regain color. During these good periods it is imperative that proper management practices be employed to precondition fields for the next drought.
Grinnell College completed phase two of an athletics building construction project in late August of 2010. The phase two construction consisted of an Olympic size swimming pool and an indoor field house with athletic offices attached. Phase one, Darby Gymnasium (home of the record-breaking Grinnell men’s basketball team), was completed in 2005. A unique aspect of the phase two project included a rain water collection system from the large field house roof and surroundings, which feeds a 20,000-gallon collection tank. Condensate water is also harvested from the air handling system in the field house, which provides a large amount of clean water for the collection tank. The water collected is used for toilets.

When the tank water level reaches 91 inches, the excess water is diverted to the storm sewer system that feeds the Grinnell Country Club ponds.
in the field house and to irrigate the game day football field.

A new main irrigation line, valves, decoder system and controller were installed after the building project was completed. This system was hooked onto our current infield piping and irrigation heads. We installed a Hunter Industries wireless Solar Sync ET sensor to help with weather monitoring, which helps conserve water on the football field.

City water is used for all of our other fields and the water quality is not good. With the city water’s high pH, bicarbonates and sodium issues, the idea of using natural rain water was quite positive. With any unique projects we had our reservations but after a full calendar year of having the system in tactic it has performed well.

How the collection system works is simple; the rain water is collected from the roof, storm drains, and bleachers from the field house area and funneled by drains into the concrete 20,000-gallon holding tank under the field house. Condensate from chiller and air conditioner units also help feed the storage tank.

The collection tank was actually dug, formed and poured with concrete as the field support structure was being constructed. When the tank water level reaches 91 inches, the excess water is diverted to the storm sewer system that feeds the Grinnell Country Club ponds. Irrigation for golf course is pumped out of these ponds. When a low point level is reached at 34 inches the system switches to city water by sensors and

Sworn Enemies:

Thatch Vs Verti-cutter.

Our VC-60 KO’s Every Time.

If you’re ready to knock-out thatch, our Verti-Cutter is the tool for the job. Our new VC-60, with a swing hitch for easy turns and a belt drive with 12” blades for an improved quality of cut. Heavy-duty, easy to operate and competitively priced. Now that’s a winner. Learn more and watch a demo online!

1stproducts.com
sales@1stproducts.com
800.363.8780

The Best Dressed Sports Fields Start Out In Our Hands.

Major League Baseball, National Football League. Major college programs. High School teams. America’s leading sports fields use America’s best field marking paints and custom stencils. When great teams choose to decorate their fields, they turn to World Class.

WORLD CLASS
athleticsurfaces

We Make The Games Look Better
www.worldclasspaints.com • 1-800-748-9649
electric valves, until the collection tank is recharged by rainfall. As an example, the summer of 2013 saw a state-wide drought and our system never switched over to city water because the condensate collection kept up with the watering demand. Ground water seepage and the condensate lines must be adding a lot of water to the tank to keep up with our current water demands and lack of rainfall.

The water from the collection tank is filtered on the way out of the tank before reaching the dual variable pumping system; this system is based on flow needs for the restrooms and field irrigation. The variable pump system has been a large upgrade; also the coverage of the irrigation heads has increased. The water quality has been relatively good so far; we have been sending in water samples to track the water quality to see if there is much fluctuation in the tank water through the year. One interesting sample I sent in early April 2011, at our irrigation system start up, was of water that had sitting for an extended period of time; the test came back very good even after being stagnant. Water test have fluctuated some but the tank water has been a huge upgrade in quality for our turfgrass compared to our city water.

This water collection system has been a success so far and more systems similar to this will be examined for any future building projects on our campus. Benefits we are experiencing so far include saving water, spending less money on water resources, slowing the watershed runoff speed from the building, and increasing the water quality immensely.

Jason Koester, CGCS, is the sports turf manager and irrigation specialist for Grinnell College, Grinnell, IA.
Membership Application

SportsTurf
MANAGERS ASSOCIATION

Experts on the Field, Partners in the Game.

Note: This form is valid only for first time STMA National members through September. Membership benefits continue through Dec. 31.

Name

Title

Employer/ Facility

☐ Business ☐ Home

Address

City

State

Zip

Home phone

Work

Cell

Fax:

Email

Signature

Direct Supervisor Name

New Members*

As a new members, you receive a FREE conference registration, value $375, to be used within 3 years! Just indicate your status on the conference registration form.

Did someone refer you to STMA? We would like to thank them, and reward them with an STMA $100 voucher.

Person who referred you:

Facility name:

*Not been an STMA national member since 2000. New student and affiliate memberships do not qualify for the free conference registration. However, all members are eligible to receive the $100 voucher for referring a new qualifying member.

In order to receive the FREE conference registration, you must be a current member in the year that you use the application.

Membership Category:

☐ Sports Turf Manager

$55

☐ Sports Turf Manager Associate* (Additional member(s) from the same facility)

$55

Please select the primary facility type where you are employed:

☐ Professional Sports ☐ Higher Education ☐ Schools K-12 ☐ Parks and Recreation

☐ Academic

$55

☐ Student (verification of enrollment)

$25

☐ Commercial

$148

☐ Commercial Associate* (Additional member(s) from the same commercial company)

$75

☐ Affiliate (Person who is indirectly or on a part-time basis, involved in the maintenance/management of sports fields)

$50

☐ Retired

$50

☐ Chapter Dues (contact headquarters for amount)

Chapter name: ________________________________

$ __________

☐ Contribution To SAFE Foundation (research, education and scholarship):

$ __________

Total Amount Enclosed:

$ __________

Payment Method:

☐ Check ☐ Money Order ☐ Purchase Order #: __________________

Credit Card: ☐ Mastercard ☐ Visa ☐ American Express ☐ Discover

Name on Card

Card #: __

Exp. Date: __________

Signature:

*There must already be a national sports turf member from your facility or commercial member from your company before you may sign up in the Associate category.

Phone: 800-323-3875 www.STMA.org
LESLIE FRAZIER FIELD, Trinity International University

- Category of Submission: College Football
- Sports Turf Manager: Andy Yeaman
- Title: Grounds Supervisor
- Education: NCA in Agriculture (Scotland)
- Full-time staff: Randy Chappell and Jonathan Ware
- Other staff: James Ware and Josh Kelsey
- Original construction: 1988
- Rootzone: Native soil, 40% loamy sand
- Turfgrass variety: Kentucky bluegrass, 5-way ryegrass, and tall fescue
- Overseed: We overseed with ryegrass by broadcasting. The process is first to core aerate, then broadcast the seed, roll and water.
- Drainage: Frazier Field uses 4, 6, and 8-inch PVC drainage pipe that are tied into existing drainage tiles.
WHY STMA SHOULD CONSIDER YOUR FIELD A WINNER?

Trinity is a small, Christian institution with fewer than 2,000 students. In 1988 Trinity started a football program in the NAIA CCAC conference. The field was built and named after the first coach, former Chicago Bear defensive back Leslie Frazier, who now coaches in the National Football League.

Our limited budget and resources make it a challenge to keep up and maintain our field; however, with hard work, diligence and pride we have one of the best fields in the division. These accolades come from outside sources such as the other teams and our suppliers, and in an age where there is only a handful of natural grass fields left this is a huge feather in our cap.

Another factor to consider for this award is that we have a small crew of only three full-time and two part-time staff for the entire university, which is more than 110 acres. This factor reinforces our application and makes this field even more prestigious for our institution to obtain.

STMA would like to thank Carolina Green, Ewing, Hunter Industries and World Class Athletic Surfaces for their continued support of the Field of the Year Awards Program.

Equipment list

- John Deere 3520 tractor with 72-inch mowing deck
- John Deere 1445 tractor with 72-inch mowing deck
- John Deere 485 lawn tractor to pull the spreader
- EarthWay pull-behind broadcast spreader
- Frontier 3-point hitch core aerator
- Agrafab 48-inch core aerator
- Jiffy model 5000 line striping unit
- Agrafab 800-pound, 6-foot roller and 300-pound, 4-foot roller
- Backpack sprayers for weed control
- Turfco Mete-R-Matic 3 model F12D topdresser
- Cushman Truckster turf vehicle
- John Deere 4 x 2 Gator
- Honda Foreman Rubicon vehicle with broadcast spreader
In 2014, STIHL Inc. is celebrating 40 years of manufacturing in the United States. Founded in 1974 by Andreas Stihl AG & Co. KG, Waiblingen, Germany, STIHL Inc. began with less than 50 people assembling one model of chainsaw. It has grown to 1,900 employees in Virginia Beach (with 200 more employees in branch locations) building more than 70 different models and more than 275 model variations in the U.S.

STIHL Inc. manufactures chain saws, grass and weed trimmers, leaf blowers, hedge trimmers, edgers, extended-length hedge trimmers, pole pruners, brushcutters, earth augers, wood-boring drills, monofilament trimmer line, and chain saw guide bars.

Located in Virginia Beach, Va., STIHL Inc., the headquarters for U.S. operations for the worldwide STIHL Group, exports to more than 90 countries around the world; and the majority of STIHL powerheads sold in America are also built in America.*

The company, which originally operated out of only 20,000 square feet of rented space, now boasts more than 2.4-million square feet (under roof) of building space nationwide (2 million of which is located in Virginia Beach). The company has 150 total acres of property in Virginia Beach (180 nationwide).

Distribution is exclusive to six independent U.S. distributors and six STIHL-owned marketing and distribution centers that sell STIHL products to a nationwide network of 8,500 servicing retail dealers.

STIHL is the only gasoline-powered chain saw manufacturer in the world that designs and manufactures its own saw chain (in Switzerland) and guide bars, with the newest guide bar manufacturing facility in Virginia Beach. STIHL products are protected by more than 1,000 patents.

STIHL “firsts” include:
- Automatic chain oiling
- Centrifugal clutch
- Chain braking system
- Electronic ignition system
- Single-lever Master Control Lever
- Anti-vibration system
- Quick Chain Adjuster (QCA) system
- Side-access chain adjustment
- ElastoStart system
- Ematic System
- World’s quietest, gasoline-powered chain saw (at the time, 1996)
- Auger brake
- STIHL Easy2Start dual-spring starting mechanism
- Dual chain braking system
- Intelligent Engine Management (IEM)
- STIHL M-Tronic
- World’s first electronically controlled fuel-injection system on handheld outdoor power equipment

*All photos provided by STIHL Inc.

Information provided by STIHL Inc.