Introducing the Pro Force™ debris blower

The new Toro® Pro Force™ debris blower delivers tremendous air power for fast removal of grass clippings, leaves, aeration cores, or other debris from your sports fields and maintained turf areas, as well as paved areas such as paths, park trails or parking lots. In independent 3rd party testing*, the Pro Force demonstrated greater CFM, or air volume flow, than any other single nozzle turbine-type debris blower currently available on the market. Operated by a wireless remote control with unmatched functionality, and with design features such as the durable one-piece plastic nozzle, the Pro Force sets a new standard. Experience the new Pro Force debris blower – the better way to get your job done.

toro.com/proforce

It turns out it IS easy being green

Get brighter, whiter, longer-lasting lines from the world’s first VOC-free, EPA-recognized field marking paints.

VISIT OUR WEBSITE FOR DETAILS: pioneerathletics.com/st511
or call: 888-659-1200
Features

Field Science
8 Levels of use before field conditions affect the playability and safety
12 Managing insect pests

Facilities & Operations
16 Cleaning and the condition of artificial surfaces
20 Turf textbooks 101: what’s currently being taught
26 STMA Professional Development: When it’s “Showtime,” you can’t just show up
30 New panel technology for field construction bases

Irrigation & Drainage
32 Update on irrigating synthetic turf: tales from real life

Tools & Equipment
34 Blowers, sweepers, vacuums & more new products

Field of the Year
36 2010 School/Parks Soccer Field of the Year
—Raider Stadium, Atlee High School, Mechanicsville, VA

Departments
6 From the Sidelines
7 STMA President’s Message
17 John Mascaro’s Photo Quiz
40 STMA in Action
43 STMA Chapter Contacts
43 Ask a CSFM
44 Marketplace
45 Advertisers’ Index
46 Q&A

On the cover: In 2002 Atlee High School became the first in Virginia to teach Turf Science as a recognized course. Led by instructor Marc Moran, the students since have used the school’s athletic grounds as their “land laboratory.”
We’ve Got You Covered

From Our Field to Yours

Providing exceptional turf and services to the sports and golf industry.

Delta Bluegrass Company
P.O. Box 307 • Stockton, California 95201 • 800.637.8873 • 209.469.7979
www.deltabluegrass.com

Steve Abella • 866.825.4200 • P.O. Box 307 • Stockton, CA 95201 • www.deltabluegrass.com
From the Sidelines

Eric Schroder
Editor
eschroder@m2media360.com
717-805-4197

Jobs, jobs, jobs

As I WRITE the US unemployment rate is 8.8%, using the following to define “unemployed”: Persons who do not have a job, have actively looked for work in the prior 4 weeks, and are currently available for work. You could drop a bag of dirt from the sky anywhere in the country and probably hit a politician who just promised someone he or she is doing everything possible to create jobs.

This spring turfgrass graduates from 2 and 4-year programs are entering this dicey job market. Here is some good news/bad news, from email exchanges I had with Robbie Dworkin, assistant groundskeeper for the Fort Wayne Tin Caps, who graduated in December from Ohio State; and Cale Bigelow, an agronomy professor at Purdue, who helps shepherd turf students through the job search gauntlet.

Dworkin said there were four important factors he had in his corner to get hired into the turf industry: education, passion, willingness, and previous experience. “Without those four things I would not be where I am today,” he responded. “Another factor is work ethic, along with involvement in your school’s turf club, local turf chapters, as well as STMA. Attendance at the past four STMA conferences was vital in networking and developing relationships.

“When preparing for my first job interview the best thing that I did was research the stadium and the organization. In the interview I asked questions that were important to me. Upon being offered the position, my decision was made easier by the answer I received to my question, ‘How dedicated is the front office to keeping the field nice and are the resources in place to do so?’ The mindset I had going into the interviewing process was that it should be more of a conversation than an interview.

“My advice to turfgrass graduates looking for full time employment in the sports turf industry would have to start with, ‘Do not wait until the last minute!’ Make sure your resume is in order, send them out early, and check the STMA website daily. Have a cover letter that you can tweak for the job you are applying to. Remember, you are competing against fellow students around the country. Have the will to win.”

More good news from Dr. Bigelow: “All our students are finding jobs. Most are entry level, and sports turf and golf continue to be the major employers. For the folks graduating in May, two have baseball jobs, four have golf assistant jobs, one has a landscape job, one is joining industry, and one is undecided but leaning toward a super’s job at a low budget course.”

And the bad news: “What is beginning to be a troubling trend is the loss of some very talented former students from the turf industry. I have had four strong students contact me over the past 4 months to tell me they were leaving the turf industry, either to go to grad school (MBA, etc.) or move into something different, such as financial planning. I suppose they just got sick of the inability to move up very quickly and/or were still making low 30’s and working 65+ hour weeks with no weekends and holidays.”
Saludos!

Espero que estén teniendo una gran temporada deportiva de primavera.

Deseo contarles un poco acerca de un área de interés para la STMA este año: **Atraer Gente.** Cuando digo “Atraer Gente,” no solo me refiero a servir a nuestros miembros, sino a dar la importancia a todas aquellas personas que están en nuestra industria. Nuestra misión comienza a partir del compromiso de la STMA: **Ser el líder reconocido en promover la industria de los campos deportivos en pasto.**

Somos una industria diversa, y entre más podamos ayudar a las personas a triunfar en su profesión, más fuerte se vuelve nuestra industria. He preparado este mensaje en español para llegar a nuestros miembros de habla hispana. Bienvenidos! También hemos incluido en la revista, un boletín informativo en español sobre: **Estrategias de Mantención para Campos Con Uso Excesivo.** Además tenemos dos boletines adicionales en Español, **Manejo del Campo Durante una Sequía,** y **Lista de Seguridad y Mantención de Los Campos de Fútbol y Fútbol Americano.** Estos tres artículos se pueden encontrar en www.STMA.org. Usted también puede encontrar aquí las versiones en inglés. La STMA ofrece un DVD, que se encuentra disponible en español e inglés, sobre el manejo de un campo de béisbol y cómo construir un montículo de lanzamiento.

Yo le animo a compartir la revista con sus colegas de habla hispana y a buscar formas para atraer a más personas y compartir sus experiencias con toda nuestra industria.

Una marea alta alcanza a todos los botes! STMA está comprometida con el manejo avanzado de los campos deportivos.
INJURIES ARE OF MAJOR CONCERN to parents, coaches and, of course athletes. Few studies have been conducted to relate actual field conditions as well as maintenance practices to reported injuries. We conducted a study in 2007 to determine the level of use that an athletic field will sustain before field conditions begin to affect the playability and safety of the field. Eleven sports turf managers from four New England states volunteered to take part in the study; they represented 12 varsity fields from nine high schools and three universities. Field use included football, soccer or both. Lacrosse was also played on two of the soccer fields.

The turf manager participants were given a form to record the date, event (game or practice) and hours/minutes of use. This provided the number of weeks the fields were in use for which we then calculated the total number of hours of use over the playing season. All participants provided their maintenance program, including nitrogen fertilization treatments, mowing height and frequency, aerification, dethatching, topdressing, overseeding, number of times chemicals were applied to control weeds, insects and/or diseases, and growth enhancement products used. The maintenance practices were quantified for statistical purposes. All the fields in the study were irrigated.

At the conclusion of the study, the participants asked their athletic departments about the number of injuries that could be contributed by players to surface contact; we did not solicit the type of injury. Nine of the 12 schools responded.

FIELD EVALUATIONS

The field surfaces were evaluated at the end of playing seasons for percent grass cover (turf density), percent weeds, surface smoothness, depressions (areas on the fields that can accumulate surface runoff), and stones at the surface. The characteristics evaluated were assigned code numbers (shown in Table 1) for the purpose of statistical analysis. Separate ratings were taken from the heavily trafficked center of the fields from goal to goal and the less trafficked areas along the sidelines. Overall field conditions were determined using the sum of ratings for grass cover and surface smoothness, with ratings for weeds, depressions and stones at the surface subtracted from the sum. The data shown in Tables 2 and 3 are from the heavily trafficked centers of the fields.

Further, we evaluated the quality of the playing surfaces by determining surface hardness, traction, and penetration resistance with separate measurements taken from

Table 1. Rating System with Codes.

<table>
<thead>
<tr>
<th>Percent grass cover (turf density)</th>
<th>Percent weeds</th>
<th>Depressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 10%</td>
<td>1 = <10%</td>
<td>0 = none</td>
</tr>
<tr>
<td>1 = 11-20%</td>
<td>2 = 10-30%</td>
<td>1 = few</td>
</tr>
<tr>
<td>2 = 21-30%</td>
<td>3 = 31-50%</td>
<td>2 = moderate</td>
</tr>
<tr>
<td>3 = 31-40%</td>
<td>4 = >50%</td>
<td>3 = many</td>
</tr>
<tr>
<td>4 = 41-50%</td>
<td></td>
<td>4 = extreme</td>
</tr>
<tr>
<td>5 = 51-60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 = 61-70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 = 71-80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 = 81-90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 = >90%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smoothness:
1 = surface is extremely uneven that will affect play and are hazardous
2 = surface is very uneven with irregularities that will greatly affect play
3 = surface is uneven with irregularities that will moderately affect play
4 = smooth surface with some irregularities
5 = smooth surface with no irregularities

Table 2. Mean and range for characteristics on 12 varsity fields from center of field from goal to goal (2007 playing season).

<table>
<thead>
<tr>
<th>Variable (code or unit)</th>
<th>mean</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hrs./week</td>
<td>12.1</td>
<td>3.7</td>
<td>21.4</td>
</tr>
<tr>
<td>total for year</td>
<td>186.2</td>
<td>39.0</td>
<td>412.0</td>
</tr>
<tr>
<td>Field Rating<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>overall field condition</td>
<td>7.6</td>
<td>1.0</td>
<td>13.0</td>
</tr>
<tr>
<td>surface smoothness (1-5)</td>
<td>3.5</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>turf density (0-9)</td>
<td>6.3</td>
<td>3.0</td>
<td>9.0</td>
</tr>
<tr>
<td>weeds (1-4)</td>
<td>1.3</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Playing Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hardness (g max)</td>
<td>55.8</td>
<td>34.8</td>
<td>103.9</td>
</tr>
<tr>
<td>traction (Nm)</td>
<td>38.9</td>
<td>26.8</td>
<td>48.3</td>
</tr>
<tr>
<td>penetration resistance (MPa)</td>
<td>1.2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Soil Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gravimetric moisture (%)<sup>2</sup></td>
<td>25.1</td>
<td>12.0</td>
<td>36.7</td>
</tr>
<tr>
<td>soil available K lbs. per acre</td>
<td>177</td>
<td>93</td>
<td>216</td>
</tr>
<tr>
<td>soil available P lbs. per acre</td>
<td>24</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>bulk density (g per cm³)</td>
<td>1.46</td>
<td>1.27</td>
<td>1.68</td>
</tr>
<tr>
<td>organic matter (%)</td>
<td>5.4</td>
<td>1.0</td>
<td>9.1</td>
</tr>
<tr>
<td>pH</td>
<td>5.8</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>sand (%)</td>
<td>77.4</td>
<td>55.7</td>
<td>95.0</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N fertilization lbs. per 1000ft<sup>2</sup></td>
<td>4.4</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td>total maintenance score</td>
<td>16.8</td>
<td>8.8</td>
<td>26.8</td>
</tr>
</tbody>
</table>

1 Density, smoothness, weeds, depression and stones at surface are factored into score for overall field quality condition.
2 Soil samples for soil moisture were collected on day when playing quality measurements were made.
THE NEW STANDARD IN FIELD SANITATION

SPORTS TURF - CHEMICALS - WATER + UVC = ZERO MICROBES

GreenZappr™
DELIVERS 99.9% KILL FACTOR
SAFE & EASY TO USE
RELIABLE ON-BOARD POWER

The day has arrived when field safety can be achieved without the use of harmful chemicals and scarce water resources. The patent-pending UVC technology designed by GreensGroomer WorldWide successfully eliminates harmful germs inherent in sports turf surfaces.

Germicidal UVC has been used in the eradication of pathogens, viruses, mold, and fungus for over 100 years. Now adapted for mobile use, the GreenZapr uses the strength of UVC in a simple tow-behind unit. With an on-board generator with intelligent power regulator, the GreenZapr efficiently sends and controls power to the light banks. The spring tine rake module lifts material, preparing it for exposure. Total immersion in the UVC is executed with a three-pass technique that results in a 99.9% kill factor.

The spring tine rake attachment is equipment with 42 tines that comb through the turf surface, lifting fiber and infill, preparing the turf for exposure.

The two 3' x 3' light banks, housing 16 shatterproof bulbs, provide the UVC energy required to kill dangerous MRSA & HIV.

The unit is powered by generator with an intelligent power regulator for efficient electric power. An optional rechargeable battery bank with inverter is also available.

GreensGroomer.com/GreenZapr 888-298-8852
the centers of the fields and along the sidelines. This data also was taken from the heavily trafficked centers (see Tables 2 and 3). Surface hardness was measured using a Clegg Impact soil tester, which is an accelerometer fastened to a 5-pound missile that is dropped from a height of 1 foot with the peak deceleration measured in gravities (Gmax). The higher the Gmax the harder the surface. Traction was measured by a device comprised of a 6-inch steel disc with six soccer studs spaced at intervals around the disc. The disc was weighted with 75 pounds and dropped from a 6-inch height so that the studs fully penetrated the surface. The torque required for the studs to tear the surface was measured in Nm (Newton meters). Penetration resistance was measured using a Penetrometer with a cone point. The cone point was pushed slowly and at a constant rate into the top 2 ½ inches of soil. Twelve readings were taken with each apparatus and then averaged.

SOIL SAMPLES

Soil samples were collected from each field to determine textural class based upon the USDA-NRCS classification system, soil organic matter content, soil available phosphorus (P) and potassium (K). Particle size for determining textural class was analyzed using the hydrometer method by separating the sand, silt and clay fractions. Percent organic matter was determined by weight loss on ignition. Soil available P and K were obtained using the modified Morgan extractant. Two intact core samples, 2 inches in diameter by 2 ½ inches in length, were taken from the center of the heavily trafficked area and two taken along the sidelines with a brass cylinder fitted inside a metal tube for determining bulk density. These results along with bulk density samples taken from the center of the fields are shown in Tables 2 and 3.

STATISTICS

Correlation coefficients (r) were computed to identify relationships between playing quality data, soil properties, maintenance practices and incidence of injury. Correlation is a measure of the strength of the association between two co-variables and is shown in Table 3. A perfect relationship or fit between two co-variables is indicated by an r value of “1” with values less than “1” indicating less than a perfect relationship. A negative sign (-) indicates an inverse relationship between any two co-variables. The degree of statistical significance of the correlation from weak to highly significant is indicated in Table 3 by the level of probability (P value) from weak (P £ 0.10) to highly significant (P £ 0.001).

FIELD QUALITY RATINGS AND MAINTENANCE

There was a wide range in field ratings for turf density, weed populations, smoothness and overall field conditions ranging from 3 to 9, 1 to 3, 2 to 5, and 1 to 13 respectively, Table 2. Turf density was positively related to smoothness (r = 0.63) and overall field conditions (r = 0.88), and negatively related to weed populations (r = -0.62) in which weed populations increased with progressively greater turf thinning and loss of density (Table 3). Percent weeds in two of the fields were 30% or greater, which also had the lowest scores for overall field quality conditions. Surface smoothness also had a major influence in improving overall field conditions (r = 0.84) Field maintenance had a considerable role in the condition of the fields. Turf density and surface smoothness increased significantly as maintenance inputs increased (r = 0.69), and (r = 0.74), respectively. Further, as maintenance factors increased, overall field quality increased (r = 0.86) with greater fertilizer nitrogen closely associated with improving overall field condition (r = 0.60).

SOIL PROPERTIES

The textural classes for the studied soils were classified as seven sandy loams with sand contents ranging from 55.7 to 74.3% sand, three loamy sands ranging from 79.2 to 83.2% sand, and two sand rootzones with 92% and 95% sand. Organic matter content in the 12 soils ranged from 1.0 to 9.1% by weight (Table 2). Bulk density values in the heavily trafficked centers ranged from 1.25 to 1.68 g cm-3 with bulk density increasing as the sand content increased (r = 0.93). Moreover, as the sand content in the soil increased, smoothness of the surface increased (r = 0.88) and the overall field quality increased with greater sand content (r = 0.69). Field turf density also improved commensurate with an increase in sand content (Table 3). The improvement in turf density, smoothness, and overall field conditions are likely the result of better wear tolerance and a firmer surface as shown by our previous studies.