Within 2 weeks, white clover control was judged to be “excellent.”

observe the drying pattern of the spray solution. The spray dried in a uniform pattern (i.e. there were no visible streaks resulting from improper overlap); hence, the nozzle spacing and height were set properly.

The following day, the broadleaf herbicide was applied using the sprayer set to the calibrated speed and pressure. A minimal amount of spray solution remained in the tank after the application was made—an indication that our calibration efforts were successful. The remaining solution was diluted and “sprayed-out” multiple times in out-of-play border areas at the far-end of the facility. Within 2 weeks, white clover control was judged to be “excellent.”

Laws pertaining to fertilizer and pesticide applications are becoming increasingly restrictive, particularly on school properties. Heighted parent and environmental interest-group awareness of chemical tools used on public grounds drives much of this regulatory policy. It is important that chemical applications are made thoughtfully and in accordance with their product labels. A thorough understanding of the sprayer calibration process allowed the application of a broadleaf herbicide at Overbrook High School to be successful.

Brad Park is Sports Turf Education and Research Coordinator, Rutgers University and member of the Board of Directors, Sports Field Managers Association of New Jersey (SFMANJ).
BERMUDAGRASS is a tropical/subtropical warm season perennial grass native to southeastern Africa. It is believed to have entered the United States around 1751, probably through coastal Georgia and/or the Carolinas. There are approximately 10 species that include the common seeded wild types as well as many interspecific hybrids. The most commonly used for turfgrass are the sterile hybrids of the *C. dactylon x C. transvaalensis* types.

Originally used in this country for pasture and hay production, it has become one of the best performing turfgrass species available. In my mind, Tifway (Tifton 419) bermudagrass is still the standard in the industry for golf fairways and athletic fields where it can be grown. It has a rich green color and produces aggressive rhizomes and stolons making it very tolerant to wear with rapid recovery from turfgrass stand loss.

Some specific cultivars of bermudagrass can be grown as far as 53 degrees north latitude, however, most are best suited for growth below 37 degrees north—the limiting factor being winter kill. For instance Patriot bermudagrass, released by the Oklahoma Agricultural Experiment Station (Oklahoma State University), is being used as far north as Purdue University in Indiana.

Most bermudagrasses are quite well adapted to hot (85-95 F, day) dry climates and can perform well under moderate drought. However, bermudagrass does not perform well under even the slightest of shade. For example, bermudagrass requires between 800-970 langleys (a unit of radiation = one gram calorie per square centimeter of irradiated surface) per day solar radiation (390-470 watts per square meter per day). This equates to at least 6 hours of full sun per day. Compare this to many cool season grasses that can thrive with only 245-490 langleys per day. This represents a very significant difference in shade tolerance.

Growing bermudagrass in shade is especially difficult when managed at low mowing heights under any traffic stress like athletic fields. Fortunately, most athletic field designs provide for minimal structural shade throughout the day. This is not always true with golf course designs, as planting or leaving a “strategic” tree(s) can be an important part of golf hole design yet can pose hours of shade per day.

This brings me to the subject at hand—growing bermudagrass in the coastal regions of California which includes San Diego in the southern most part north to the central coastal region of San Luis Obispo—approximately 300 miles north of the Mexican border. This area is characterized as having a mild Mediterranean climate with average summer temperatures ranging from 75-90 F (day) with winter temperature ranging from 40-60 F. This is perfect weather for humans but not very ideal for growing many warm season grasses. This is especially true when you consider the rapid drop in night time temperatures in the summer.

Add to this the “coastal” influence which includes fog and clouds, you can see that this region may not always be conducive to growing bermudagrass. Not only do you not have temperatures suited for bermudagrass growth but cloud induced limitations in radiant energy adequate for photosynthesis may be lacking as well.

Growing bermudagrass in shade is especially difficult when managed at low mowing heights under any traffic stress like athletic fields.
COMPARE WITH PHOENIX

Comparing the percent growth potential (GP) for bermudagrass in Phoenix, AZ (where bermudagrass is highly preferred) with that of San Diego, CA there is a significant difference in potential for growth. Growth potential reaches 100% in Phoenix for approximately 6 months of the year (late May to mid-October). The highest GP in San Diego, however, only reaches a high of 40% and for only about 3 months (July to mid-September). In Sacramento (further inland but also further north of San Luis Obispo) the GP still only reaches a high of 60% for July to mid-September.

Gelernter and Stowell state that bermudagrass still performs adequately at and above 50% growth potential, but does poorly below that mark. So you can see why turfgrass managers struggle along California’s coast to grow quality bermudagrass.

What this means is that even though it appears these coastal regions should be ideal for bermudagrass growth, low average temperatures (especially at night) and cloudy/foggy days prevent adequate carbohydrate production and therefore limited growth in bermudagrass.

FESCUES

This is not the case for most cool season grasses, however. I have found that both tall fescue and the fine fescues do very well in these coastal regions as they have moderate heat and drought tolerance and do well under cloudy/foggy (slight shade) conditions. The potential problem with growing these cool season types, however, whether here in San Luis Obispo or in San Diego, are the dry summer conditions and the poor quality water resulting in salt and carbonate accumulations (Bowman, et.al., 2006). As an aside, Kentucky bluegrass does not perform well in southern California because of the occasional high summer temperatures and the water requirements for its survival.

MANAGEMENT STRATEGIES

Managing bermudagrass on the California Coast involves treating the stand as if it were growing in shaded condition, because ultimately it is. Shaded bermudagrass develops thin, etiolated leaves, increases internode
length, and a poorly developed root system.

Over time, shade results in a thin canopy intolerant to traffic. Under traffic stress, the stand will rapidly thin to the point of stand failure, weed intrusion, and finally, poor surface performance.

Therefore managing bermudagrass under these conditions require maximizing photosynthetic efficiency and traffic control. Managers should be aware that “normal” management strategies need adjustment.

One of the most important considerations is how much and what kind of nutrition to employ. The principle being to avoid excessive succulent growth by using high rates of soluble nitrogen sources which leads to plants ill equipped to handle stress.

As the plant will use any and all carbohydrate reserves for leaf growth and not for stolon and rhizome growth, re-growth potential from heavy stress will be reduced. Potassium should be used judiciously to promote carbohydrate synthesis and leaf hardening as well as increased water conservation and winter hardiness.

Mowing height should be maintained at the higher limit allowed for the intended use. For instance, using bermudagrass for fairways vs. athletic fields vs. home lawns require different mowing practices and, therefore, different tolerances.

Managers may have to cultivate more often yet less aggressively. Compaction relief and aeration are important but recovery from these activities, especially if they are intensive, may be slow and therefore, may promote poor recovery, quality, and weed envision.

Overseeding is a very popular and important practice to those that manage athletic fields during the winter months. Overseeding involves planting (seeding) a cool season (CS) grass into an existing canopy of a warm season (WS) grass (usually bermudagrass). This process starts in the fall as the bermudagrass is going dormant and results in good color and playing conditions during the winter from the CS grass.

On the California coast, those that overseed have very interesting concerns as it relates “spring transition.” This is when management switches away from the CS grass and shifts to promoting the annual recovery (green-up) of the WS grass.

In the coastal regions of California, it is critical that the spring recovery (transition) of the bermudagrass not be delayed. Bermudagrass relies on stored carbohydrates, accumulated the previous summer and early fall, for re-growth of new shoots in the spring. As we may assume that bermudagrass grown on the California coast may not have stored a great deal of sugar, we can also assume that there may be times when there may not be enough sugar to overcome a highly competitive CS grass during transition, especially if the perennial ryegrass is growing at its best.

Therefore, managers on the California coast should considered a well timed chemical approach to removing the CS grass. Something like Revolver, Manor or Kerb can provide quick reliable removal of the CS grass during the spring (Figure 1).

Using Figure 1 you can see that timing is the critical factor. I would recommend applying the product when the bermudagrass has reached approximately 50% green-up of any un-overseeded areas (create a test area). It is important to consult the label and your service professionals as there are several considerations for use, specifically grass species tolerances, movement of the material along the soil, and soil temperature at application.

Using bermudagrass cultivars tolerant to either cold, shade, or both may provide another possibility. Although not everyone can or will renovate to new species of one grass or another, there are some new bermudagrasses available that may provide choices for quality turfgrass in these difficult costal conditions.

For instance, the University of Georgia’s Wayne Hanna recently released a new “Tifton” bermudagrass called TifGrand which has been developed as a shade tolerant bermudagrass. This hybrid will be available sometime in 2010.

Another shade tolerant bermudagrass already available is Bull’s Eye (West Coast Turf). It was recently installed on the baseball field at PETCO Park, home of the San Diego Padres. It was chosen for its color, durability, and tolerance for shade. This grass is also found on the Bank One Ballpark, home of the Arizona Diamondbacks.

Lastly, in a 2-year study conducted by Baldwin and Lui, they were able to rank several different bermudagrasses for response to shade. They found, using 64% continuous shade that the best cultivars for shade tolerance were Celebration, TifNo.4 (TifGrand), TifNo.1 and Transcontinental based on turfgrass quality, chlorophyll content, root biomass, and root length.

I think that it is easy to see that growing bermudagrass on the California coast can be difficult at times. Cloudy conditions with periods of less than ideal high summer temperature make growing bermudagrass a challenge. With good management, though, and the right cultivar choices whenever possible can make management easier.

Actually, whether growing a warm season or a cool season grass on the beautiful California coast practitioners will experience problems. Whether it is the climate, the soil, or the water turfgrass managers in California must stay on top of their management strategies to ensure the best turfgrass quality possible.

Dr. Terry L. Vasey is an assistant professor at California Polytechnic State University, San Luis Obispo, CA. For references, see www.sportsturfonline.com.

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Slow Activity (3-6 Wk), Applied late April - May</th>
<th>Fast activity (1-2 Wk), Applied mid-May - late May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerb 50WP</td>
<td>1 lb / A</td>
<td>- - -</td>
</tr>
<tr>
<td>Manor or Blade 60DF</td>
<td>0.5 - 0.75 oz / A</td>
<td>- - -</td>
</tr>
<tr>
<td>Revolver 0.19SC</td>
<td>9 oz / A</td>
<td>17-26 oz / A</td>
</tr>
<tr>
<td>TranXit 25DG</td>
<td>0.5 oz / A</td>
<td>1-2 oz / A</td>
</tr>
<tr>
<td>Monument 75WG</td>
<td>0.1 oz / A</td>
<td>0.3 oz / A</td>
</tr>
</tbody>
</table>

Figure 1. Chemical products used to remove cool season grasses from overseeded bermudagrass during spring transition.
These ruts in the turf are not from a crazed off road racecar or even from off road motorcycles. The ruts were caused by a marching band competition. This competition had been planned for some time on this county stadium shared by two high schools, one middle school as well as many public games and events. In the days before the marching band competition, the area received more than 6 inches of rain. The weather seemed to dry out some, so the competition was not cancelled, then another series of storms brought more rain to the area right before the event. There were more than 30 bands that participated in the competition over a 12-hour period on this field and the aftermath was quite evident. The ruts near the end zone were mainly caused by the hand pull carts that carried equipment out onto the fields for the bands. This field is usually not overseeded but after this September event, it was decided to go ahead and overseed the bermuda. So the field was heavily aerified, seeded and topdressed. This decision turned out to be a good one as one of the high schools that uses the stadium made the playoffs and hosted all of the playoff games on this field as well. I hope the bands were not all wearing white for the event.

Photo submitted by Glenn D. Lucas, Jr., Southern Athletic Fields, Inc. in Petal, MS. Wayne Lindsey is with Maury County Parks and Recreation in Columbia, TN.

If you would like to submit a photograph for John Mascaro’s Photo Quiz please send it to John Mascaro, 1471 Capital Circle NW, Ste #13, Tallahassee, FL 32303 call (850) 580-4026 or email to john@turf-tec.com. If your photograph is selected, you will receive full credit. All photos submitted will become property of SportsTurf magazine and the Sports Turf Managers Association.
HY SHOULD THE EAST ANAHEIM LITTLE LEAGUE MATTER TO YOU? The league's field, once a treacherous battleground where bad hops usually led to bloody mounds, is now becoming a proving ground for professional baseball.

When the East Anaheim Little League came to Barney Lopas, head groundskeeper for the LA Angels of Anaheim for help on their field, it was a challenge to adapt a major league maintenance schedule to a field that lacked tools, budget, and had a fluctuating base of volunteer manpower. Lopas, a concerned parent and coach, asked himself, “what can I focus on right now to make the biggest impact on this field within the league’s budget and volunteer help?”

Being that 70% of a baseball or softball game is played on the infield skin, Lopas decided to focus his efforts there. If a ground ball made it over the infield lip, player’s had to expect the unexpected with the unpredictable infield. The loose infield mix not only created dangerous moments, but also provided a base for volunteer manpower. Lopas, a concerned parent and coach, asked himself, “what can I focus on right now to make the biggest impact on this field within the league’s budget and volunteer help?”

Replacing the infield mix was definitely not within the league’s budget. Lopas realized that the one thing he could carry over from his major league field, and still stay within budget, was an infield amendment.

PARTICLE SIZE ANALYSIS IS A MUST

The first step in amending an infield is knowing where you stand right now. We have all heard the numbers, an infield mix should be 70% sand, and 30% evenly split between silt and clay. Without a true particle size analysis you may think you have plenty of clay content, but you may actually be playing on silt. Too much sand can usually be improved by adding more clay (depending on the parent material of the mix).

On the flip side, too much clay can generally be remedied by adding more sand. Too much silt to begin with, and you are better offstarting with a new infield mix altogether. While silt is a necessary component of making a good infield work, too much of it can put you in a ‘no man’s land’ of poor drainage and no cohesion, similar to what Lopas had to deal with. Only extreme cases warrant adding silt.

This brings us back to the particle size analysis; if you don’t know the composition of your infield, you may be adding unnecessary silt, sand, or clay.

Of course a quality infield mix is the best starting point. Infield mixes vary by use and region; a major league mix is going to be closer to 60% sand and 40% silt and clay, with more of a focus on the clay. This type of infield will be difficult for a little league or heavy use municipality to maintain properly. These fields should be closer to the 70/30 range.

Many high school, municipality, and even college fields use soils that may be classified as “clay loam” and fit within the recommended particle size, but contain too much organic matter (broken down plant material like mulch). While organic matter is great for plants, it is bad for players.

Too much organic matter can loosen soil, impede lateral surface drainage, and disrupt the structure that hard soil particles provide to the player. The biggest problem with organic matter is that it breaks down and turns into silt. Many laboratories provide a separate organic matter content test, sometimes included with the particle size analysis. This test can provide you with valuable information that can help you plan ahead for future silt from organic matter breakdown.

Find an infield mix that derived from a good parent material, processed mechanically and produced specifically for baseball and softball to avoid high organic matter content. If you don’t have the luxury of purchasing a new infield mix, proceed with an infield amendment.

SELECTING AN AMENDMENT

The next step is to know your goal. The East Anaheim Little League’s main objective was player safety. A municipal field’s goal may be Return On Investment—maximize field use while reducing maintenance. A college may want to enhance home field advantage and get more practice time despite the elements.

While most desire all of these goals, really focusing on one or two motives will help in matching the right amendment with your existing soil conditions. Infield amendments should be used cautiously and for a specific reason, not just thrown onto an infield and expected to “do something.” If not used properly, they could end up doing more harm than good.

Infield amendments come in all shapes and sizes, but mainly fall under two categories: mineral and organic-based. If your goal is to increase drainage, beyond adding sand and risking a loose infield, mineral amendments such as gypsum and calcium carbonate can help you improve your infield’s natural drainage properties. Take care in applying these mineral amendments as over application can be a problem. Especially note that calcium carbonate should only be applied to high clay soils. Further soil tests, such as pH studies, should be done to determine the exact amount needed.

While vertical drainage is crucial for playability on an infield, most water should exit the infield via lateral drainage. The best way to improve lateral drainage is building a 1/2% slope into your field at the onset and maintaining a level field over time. Keeping a field level during a game is difficult as low areas are bound to form and collect puddles.

Conditioners can be a good way to absorb puddles and continue play in rainy weather. The most popular conditioners are calcined or vitrified clay, mineral amendments made from fired clay particles that maintain a loose consistency and absorb water. Conditioners also work well as topdressings on higher clay infields. They provide the loose “cushion” needed to drag and slide on.

Conditioners work great for what they are designed to do, but Mark Razum of the Colorado Rockies warns, “infield conditioners are not a cure-all. Before adding them, you need to make sure your infield is level and your holes filled in with a good infield mix. I see it time and again, groundskeepers think they can just level their field with a topdressing, but the end result is like playing in a sand pit. When infield conditioners are substituted for good groundkeeping, they can turn against you.”

Organic infield amendments are used to increase safety and field usage. They are incorporated into the soil to help stabilize the infield.
and improve cohesion and absorption. Good organic amendments will effectively bind soil particles to help turn loose, even unplayable infield into cohesive and stable footings. These products make silt particles act more like clay particles, which is a great defense against weather extremes.

The East Anaheim Little League actually approached Barney Lopas several years ago. Now Lopas has crafted a yearly maintenance program, which builds upon the progress from previous years. “Small incremental changes each year can lead up to equal the big immediate renovation,” says Lopas. While the maintenance program focuses on new areas of development, like turf health and mound renovation, the importance of the infield amendment, Stabilizer®, is never forgotten. You don’t need to add the same amount as the initial installation, but adding the recommended amount each year can ensure that you don’t undermine the progress you’ve already made.”

A recommended infield amendment program should include ripping and tilling your fields once a year. Fines do sink to the bottom, which in a small amount can be a good thing. When fines sink, larger particles remain on top, providing the loose cushion or sliding surface. Too much sinking and your surface becomes too loose and drainage layers may form. The surface soil particles themselves can also become crushed from overuse, depending on the parent material of the infield mix. Also, soil particles weather and break down the same way that the Grand Canyon was formed: exposure to rain, snow, and sun. Ripping and tilling once a year evenly blends soil particles, brings fresh soil particles to the surface, and provides the good opportunity to level the infield by adding additional infield mix.

Adding infield mix once a year is a good idea, as the mix is washed into the grass, players pick up the mix on their cleats and groundskeepers throw infield mix away when picking up debris. Before tilling, amendments that are incorporated into the soil such as mineral and organic amendments, should be spread at the recommended rates via drop spreader or topdresser. Tilling incorporates infield amendments evenly throughout the profile. Always beware of getting into your base material when you are tilling. After tilling, the infield should be leveled, preferably by a laser grader to achieve the 1/2% slope, watered, and rolled if necessary. This program should be performed more than once a year for fields that receive extremely heavy use.

Clayton Hubbs is a former groundskeeper for the Arizona Diamondbacks and Director of Operations for Stabilizer Solutions, Inc., clay.hubbs@stabilizersolutions.com. Products from Stabilizer Solutions, Inc. are used by little league, college and numerous professional fields including: L.A. Angels of Anaheim, Arizona Diamondbacks, San Diego Padres, Oakland A’s, Colorado Rockies, Philadelphia Phillies, New York Mets, and New York Yankees.
Gulf location, drought challenge crew in Corpus Christi

Whataburger Field, home of the Corpus Christi Hooks, AA affiliate of the Houston Astros
Whataburger Field, home of the Corpus Christi Hooks, AA affiliate of the Houston Astros, was awarded the Sports Turf Managers Association’s 2009 Professional Baseball Field of the Year Award. The crew was led by field superintendent Garrett Reddehase, who was promoted after the season to take over duties at AAA affiliate Round Rock. He credits full-time assistant Josh Brewer and season crew members Eric Ortiz, Robbie LaCount, Brady Tumlinson and Ryan Servantes for their valuable contributions to winning the award.

Whataburger Field is located on land once covered by cotton warehouses at the Port of Corpus Christi, TX. Large, oceangoing vessels navigate the channel that runs just beyond the stadium. Prevailing southeasterly winds create significant issues with turf salinity and irrigation. In 2009, the area went through its worst drought since 1917 and saw average temperatures 4 degrees above normal. Reddehase says they received only 3 ¼ inches of rain from January to August, and half of that came in 1 day.

These conditions created challenges; the crew was forced to hand water many areas of the outfield because the irrigation system was not able to provide complete coverage due to gusting winds and high temperatures. But Reddehase & Co. successfully kept the playing surface in stellar condition, aerifying and managing the sodium levels, even

In 2009, the area went through its worst drought since 1917 and saw average temperatures 4 degrees above normal. Reddehase says they received only 3 ¼ inches of rain from January to August, and half of that came in 1 day.
after 13 games in a 4-day tournament, part of a 34 games in 33 days stretch.

Whataburger Field was completed in 2005 and last year saw nearly 600 hours of action, plus another 225 hours of concerts, banquets, charity events and corporate parties. The field is TifSport bermudagrass and includes patches of GN1 and common Bermuda scattered throughout. It is over-seeded in mid-December with 400-600 pounds of perennial ryegrass. It features a 12-inch sandy rootzone on top of 4 inches of pea gravel.

Each year the infield skin is laser-graded and new material added (nearly 11 tons of Diamond Pro calcined/vitrified clay in 2009). Last year the bullpens were renovated; approximately 1,500 square feet of turf 5 inches deep (root removal included) was removed from each bullpen. Four tons of sand and crushed brick was added and leveled so turf could be applied. Six 250-square foot pieces of turf were added to each pen; the turf came from the New Orleans Superdome. Each piece weighed nearly a ton because the used turf included the rubber infill. Result of this renovation is savings in water, fertilizer and man hours.

“The Corpus Christi Hooks are thrilled to have Whataburger Field recognized as the 2009 professional [baseball] field of the year,” says Hooks general manager Michael Wood. “From the beginning of his time here, Garrett has shown a drive for excellence and a passion to grow his knowledge base and skill set. That, along with the ability to assemble and manage a top-notch field crew, has enabled him earn the respect of his peers. We’ve always known he did a great job; we’re excited to see others acknowledge it.”