For every field,

there's a John Deere well within reach.

John Deere Assured Certified Pre-Owned equipment. What if you could have John Deere quality equipment on your field at a price that fits well within your budget? You can, with John Deere Assured, the only pre-owned turf equipment that comes with an ironclad one-year warranty. Each piece of John Deere Assured equipment must pass an exhaustive 100-point checkup. And any parts replacement is done with genuine John Deere Parts.

Now you and your crew can enjoy the quality, support, and service of John Deere equipment at a price that looks good on any bottom line. To find out more about John Deere Assured, call your local John Deere distributor or 1-800-537-8233. www.JohnDeere.com

Circle 110 on card or www.oners.ins.ca/5905-110
"K-Rain Products are Better than the Rest"

"K-Rain products are better because the company is totally focused on making the best rotors in the industry. K-Rain is a specialist in sports field rotors, because of this fact they are the rotors of choice. The University of Maryland needed 21st Century irrigation systems. With K-Rain, that's what we have." – Rob Anthony

We work with one mindset: Make it better. That's the power behind K-Rain. THAT'S THE POWER BEHIND YOU.
FEATURES

Field Science
8 Fight spring dead spot
14 Beat insects in 2006
22 Sprayer calibration: get it right

Field of the Year
30 San Diego State’s Charlie Smith Field at Tony Gwynn Stadium, and its turf manager Ron Hostick, CSFM, won the 2005 STMA Field of the Year in the College Baseball category.

Facilities/Operations
34 Synthetic/Natural Turf Task Force report from STMA

Irrigation & Drainage
46 Spring sports’ headache: water

Tools & Equipment
51 Utility vehicles

DEPARTMENTS

From the Sidelines 6
STMA President’s Message 7
John Mascaro’s Photo Quiz ... 26
SAFE Column 54
STMA In Action 55
STMA Chapter News 56
Online Education 58
Marketplace 59-61
Q&A 62

On the cover: San Diego State’s Charlie Smith Field at Tony Gwynn Stadium.
I designed this field from top to bottom, and I wanted the best turf I could get. The major leagues use Bull’s-Eye Bermuda—I wouldn’t have used anything else.

Let’s Talk Turf.

- Deep blue green color
- Resists scalping
- No seed heads
- Better in shade
- Excellent wear tolerance

Just ask the pros!

Bull’s-Eye Bermuda

-West Coast Turf
Home of Super Bowl Sod

For details call 800/447-1840, or visit www.westcoastturf.com

Bret Saberhagen
Head Baseball Coach
Calabasas High School
Calabasas, CA
2x Cy Young Award Winner
1985 World Series MVP
Hey, Joe Buck, why don’t you find that silver spoon you were born with and stick it back in your mouth next time you want to make a comment like “it’s dirt, really” when talking about growing grass in Chicago in January?

In case you missed it, Buck, a broadcaster for Fox, spouted that exact nonsense during the Carolina Panthers v. Bears playoff game telecast January 15. I’ll take a bite out of my lawn if someone can prove to me that Buck has ever had a conversation with a sports turf manager about how difficult it is to prepare a natural turf field for an NFL game in the middle of winter.

If it wasn’t for Buck’s father, the late Jack Buck, a true broadcasting legend, greasing the skids, I wonder where Sonny Boy would be today?

For the record, I thought Ken Mrock and his crew’s field looked terrific for the conditions at that game, and was certainly NOT a factor in the game’s outcome.

Twenty teams competed in STMA’s 2nd annual Student Collegiate Challenge at the Annual Conference. Congrats to our “Q&A” columnist Dr. Grady Miller, whose students from the University of Florida made up two of the top four finishing teams. Joey Stevenson, Chase Best, Daniel Mudd, and Nick Gressley from Purdue University won the Challenge. And of course a team from my alma mater, Penn State, finished third. Congratulations to all.

The winner of the 2005 Terry Mellor Memorial Scholarship is Cheryl Burton, chief groundskeeper at Mt. Mary College in Milwaukee. The scholarship is awarded annually in memory of the brother of David Mellor, director of grounds with the Boston Red Sox, to honor individuals who commit to professional development through continuing education, and is sponsored by Turfex Athletics. Burton has been with Mt. Mary College for 8 years and currently pursuing her associate’s degree in horticulture landscaping.

William Ray, turf student at Abraham Baldwin Agriculture College in Tifton, GA, won the fourth annual Toro Super Bowl Sports Turf Training Program. Ray joined grounds crew to prepare and maintain the game field and practice facilities at Ford Field for Super Bowl XL last month. After serving in the U.S. Army, Ray focused on his education to prepare for a career in sports turf management.
President’s Message

Certification Today

TMA Headquarters reported last month that there are now 65 Certified Sports Field Managers. In 2005, nine new members were certified. In addition, at the Annual Conference members had two opportunities to test and seven out of eight people who took the exam passed.

Certification in the field of sports turf is important for the same reason it has been important in other fields. It raises the bar of excellence for everyone involved. Certification signifies that an individual has been found competent in the knowledge of sports field maintenance, and recertification monitors an individual’s progress in acquiring continuing education. We demand standards of professionals from a number of other occupations. Why should we demand anything less of sports turf managers? In addition, certification is an increasingly important process for our association’s growth and identity.

The Certification Committee under co-chairs Lance Tibbetts, CSFM and Dale Getz, CSFM, was successful in 2005, with a goal to grow the number of certified members. In the STMA Strategic Plan, a goal of 75 CSFMs by mid-2006 has been set. The committee also consistently monitors the program and recommends enhancements to ensure that the program is the top achievement for sports turf managers.

The mechanics of becoming certified are straightforward. The STMA firmly believes that a combination of education and experience are necessary to be the best possible athletic field manager. However, it also recognizes that in a profession as diverse as the sports turf industry, experience should play a major role. To successfully gain certification, sports turf managers must meet certain education and/or experience requirements. It is possible to be certified without having any formal education beyond high school if you have enough years of experience. You cannot, however, become certified by virtue of education alone. For more information on how to qualify for STMA’S Certification Program, contact Headquarters or visit the website at www.sportsturfmanager.org.

Priorities this year for the Certification Committee include reengineering the information process for those interested in pursuing certification, and developing a plan to promote to employers the importance of certification. It is these employers that can ultimately strongly influence the demand for certified members in their workplaces.

The decision to seek certification says more about an individual than a willingness to study for a test. It is symbolic of the commitment to the profession. It also speaks volumes about your desire for advancement, the hunger for new knowledge, and the pride in adding those letters to your title.

In the end, choosing to commit oneself to the certification process likely will not bring you fame or fortune. But if you believe in investing in your future, I cannot think of a richer professional experience.
I first encountered spring dead spot (SDS) in 2000 on a Tifway 419 bermudagrass fairway in Virginia Beach, VA while traveling with a USGA agronomist. I remember the agony on the superintendent’s face as we discussed potential chemical control options and cultural practices to help reduce the damage from SDS the following spring. Finally the conversation turned to complete renovation and we contemplated a conversion to another species such as creeping bentgrass, or a more resistant cultivar of bermudagrass. At the time, options for this turf manager seemed bleak to say the least. Researchers understood less back then about environmental and cultural practices impacting the life cycle of SDS, and there was no commercially acceptable chemical control. While a 30-40% reduction in disease severity was attainable, fungicide programs were costly because they typically required two or more applications. In addition, we understood less about the number, method, and timing of chemical applications necessary to provide an effective fungicide program for improved SDS control. Unfortunately, turf managers had very few options other than getting through the season with some turf recovery and hope for the best the following year.

Currently, more insight and information exists on how to fight SDS. Scientists now understand more about the life cycle of the causal pathogens, cultural and environmental factors that influence SDS development and breeding programs designed to select for more resistant bermudagrass cultivars. Also, chemical control options, including the timing and method of application of specific fungicides, are currently being assessed to develop more effective and improved fungicide programs to combat SDS. While my experiences with SDS have been primarily on golf courses, the disease can be problematic for sports turf managers. Athletic field managers often have, or are likely to deal with this disease if they are managing common bermudagrass (Cynodon dactylon) and Bermudagrass hybrids in the transition zone, and primarily in the northern most range of bermudagrass growth in the United States.

Symptoms and causal pathogen
SDS is a particularly devastating perennial disease to Bermudagrass because the pathogen begins its colonization by infecting turfgrass roots, stolons, and rhizomes. After visual diagnosis, control options are limited and likely too late. SDS infects bermudagrass of all ages,
the only system designed to be pushed or pulled around your jobsite

SkidMaster Pro by LaserLeveling

The SkidMaster Pro has been designed to handle any type of finish grading and represents the very best in precision leveling systems. This unique skid-steer grading system is built around our patented push-pull design to ensure greater usage on any jobsite.

The SkidMaster Pro is manufactured to the highest standards using our unique PILOT hydraulic system giving you proportional valve technology at a fraction of the traditional cost. In addition, the SkidMaster Pro is engineered for use with our laser machine control packages which offer 1/4” accuracy and automated operation.

For more information, please call and speak to one of our grading specialists, or visit us on the web at www.laserleveling.com.

LaserLeveling 800.622.5777 www.laserleveling.com a Trimble partner

Circle 113 on card or www.oners.lms.ca/5905-113
One difficulty in interpreting SDS fungicide trial data is that test plots are often not uniformly infested, resulting in plot rather than treatment effects.

but most often occurs on established, 2-4 year old, intensely managed turfgrass stands. SDS kills Bermudagrass down to the soil surface while destroying roots, rhizomes, stolons, and shoots, leaving well defined, sunken, circular patches. Patches range in size from an inch up to a few feet in diameter and usually form as the Bermudagrass breaks winter dormancy, although the infection likely occurs the previous fall. If left untreated, the patches begin to coalesce and devastate large turf areas.

The causal pathogens of SDS are three different root-infecting fungi called Ophiostoma herpotricha, O. korrae, and O. narmari. These pathogens are classified as ectotrophic root-infecting fungi (ERIF) based upon the site of primary infections. Species of these fungi are soil borne and grow over living turfgrass roots, rhizomes, and stolons similar to summer patch (Magnaporthe poae), which infects primarily bluegrasses, and take-all-patch (Gaeumannomyces graminis) of creeping bentgrass (Agrostis stolonifera). Infected roots and stolons typically become rotted and covered with dark brown or black hyphae. O. korrae also causes necrotic ring spot disease of annual bluegrasses (Poa annua) and Kentucky bluegrass (Poa pratensis).

Environmental, cultural factors
Several key environmental factors increase the chances of SDS infection and subsequent colonization. SDS is most active when temperatures and soil moisture favor fungal growth. Bermudagrass becomes most susceptible when growth slows in the early fall and spring during periods of cool, wet weather. Scientists believe, however, that much of the damage caused by SDS results from winter desiccation, making the initiation of fall dormancy, severity of the winter, and Bermudagrass cold hardiness important factors for disease development. It appears that during the winter, SDS kills roots and crowns directly by infection, or indirectly by predisposing the Bermudagrass to winter injury and subsequent desiccation. Bermudagrass cultivars with increased cold hardiness tend to exhibit greater resistance to SDS.

Cultural practices that promote increased winter hardiness can minimize SDS damage. For example, excessive fall nitrogen applications are not recommended in SDS prone areas. Avoid more than 4-5 lb. N/M/year, but most importantly, discontinue nitrogen applications at least six weeks before expected Bermudagrass dormancy. Additional cultural practices used by turf managers to reduce the damage from SDS include routine core cultivation as an integral part of a thatch management program, improving soil drainage and compaction, maintaining adequate potassium fertility, and the use of acidifying fertilizers. Implementing these cultural solutions can be an effective first step when designing an SDS management program.

Chemical control
Control of SDS with fungicides has been spotty at best in the field and in control studies at turfgrass research plots throughout the United States. In order to suppress disease development, a systemic fungicide should be applied in the fall, when the pathogen begins to infect root tissue. The major factors influencing the control of SDS with fungicides include the timing and dilution rate of the application. When targeting a soil borne pathogen like SDS, chemical applications should be made in sufficient volumes of water so that the fungicide can effectively