Great Lines. Faster Than Ever.

Superior Line Quality, at a Speed that Matters.
The NEW FieldLazer™ line striper from Graco® delivers the highest quality lines without sacrificing your valuable time. With innovative airless technology you can apply brighter, longer lasting lines quicker and more efficiently than ever. When time and quality are on the line FieldLazer is the name to choose.

For more information, see your nearest Graco distributor, call 1-800-690-2894 or visit us on the web at www.graco.com
move through the turf canopy and positioned for absorption by root and crown tissue. One difficulty in interpreting SDS fungicide trial data is that test plots are often not uniformly infested, resulting in plot rather than treatment effects.

Tredway and Butler (2003) studied both the timing and application method on SDS control for two Tifway bermudagrass athletic fields. In general, they found that Banner Maxx (4 oz/M) and Rubigan 1AS (6 oz/M) provided the best control of SDS, improving control by 41% compared to the control. On one field, the method of application significantly affected SDS suppression. Applications in 5 or 10 gallons/M were more effective than applications in 2.5 gallons/M, or 2.5 gallons/M and watered in with one-quarter inch of water. Therefore, in this study higher dilution rates led to better control of SDS. Syngenta’s university sponsored research trials uncovered similar results. Increasing the spray dilution rate led to better control of dollar spot and brown patch on turfgrass maintained as a golf course fairway.

In the same SDS study, trends were noted regarding the most effective timing of fungicide applications on the control of SDS. Multiple applications were most effective and a single application made in August, September, or October was more effective than a one made in November. Fungicide applications were most effective when soil temperatures were between 60-80 degrees, prior to soil temperatures falling below 60 degrees, when bermudagrass root growth declines (Tredway and Butler, 2003). Based on these and other field trial data, a fungicide program should be used as one component to an integrated SDS management approach rather than as a silver bullet.

Biocontrol options are worth mentioning as an alternative approach to fighting SDS in the future. A bacterium was recently discovered that suppressed the growth of O. herpotricha to an integrated SDS management approach. Applying bacterium as a soil drench has provided the best control of SDS, improving resistance to SDS. If feasible, selecting a more cold resistant variety of Bermudagrass like Midlawn, Midfield, Midron, Mirage and Sundevil is recommended. Some common cold susceptible cultivars include Princess, Sonesta, Tifton 10, Sunturf, Tifway, Tifgreen, Tropic, and Oasis. Researchers are also focusing on specific pathogen-plant interactions in an attempt to breed for cultivars more directly resistant to the causal pathogens of SDS. The greatest limitation for turfgrass breeders remains the lack of a quick screening procedure. Five to six years are generally needed to gather meaningful results. Therefore, controlled studies have been initiated in parallel with breeding to determine specific plant genes that correspond to increased resistance to SDS.

SDS remains a devastating disease on bermudagrass turf in transition zone and specifically in the northernmost range of bermudagrass adaptation because of the variation in over-wintering weather conditions and different levels of bermudagrass resistance to cold. These factors largely dictate the extent of disease severity in the spring. Turf managers currently have more tools to fight the disease now compared to 5 years ago, but we still have a long way to go. Similar to fighting other tough to control diseases that affect turfgrasses, a multifaceted, integrated approach is essential. A program that uses every option including species selection, advantageous cultural practices, careful monitoring of environmental conditions, and both chemical and biocontrol options remains the current best defense used to fight SDS.

Breeding and the future research
According to turfgrass pathologists, bermudagrasses with good winter hardiness will better resist SDS. If feasible, selecting a more cold resistant variety of Bermudagrass like Midlawn, Midfield, Midron, Mirage and Sundevil is recommended. Some common cold susceptible cultivars include Princess, Sonesta, Tifton 10, Sunturf, Tifway, Tifgreen, Tropic, and Oasis. Researchers are also focusing on specific pathogen-plant interactions in an attempt to breed for cultivars more directly resistant to the causal pathogens of SDS. The greatest limitation for turfgrass breeders remains the lack of a quick screening procedure. Five to six years are generally needed to gather meaningful results. Therefore, controlled studies have been initiated in parallel with breeding to determine specific plant genes that correspond to increased resistance to SDS.

SDS remains a devastating disease on bermudagrass turf in transition zone and specifically in the northernmost range of bermudagrass adaptation because of the variation in over-wintering weather conditions and different levels of bermudagrass resistance to cold. These factors largely dictate the extent of disease severity in the spring. Turf managers currently have more tools to fight the disease now compared to 5 years ago, but we still have a long way to go. Similar to fighting other tough to control diseases that affect turfgrasses, a multifaceted, integrated approach is essential. A program that uses every option including species selection, advantageous cultural practices, careful monitoring of environmental conditions, and both chemical and biocontrol options remains the current best defense used to fight SDS.

References:

Gordon Kauffman III, Ph.D., (gordon.kauffman@syngenta.com), is a contracted field representative with Syngenta Crop Protection Inc., Greensboro, NC.
New Moons Rising after Midnight...

Introducing advanced premium Kentucky bluegrass from Turf-Seed, Inc. All are distinctly different and all are improvements over Midnight. Each has beneficial attributes to better turf!
Sports turf managers need to maintain safe, attractive, play-able athletic surfaces regardless of whether their fields serve recreational players or provide the competitive arena for varsity or professional-level athletes. While insects are rarely the first motivation for field management decisions, certain pests can be highly destructive when outbreaks occur. Biting or stinging insects can also be a hazard when they occur on or near playing fields. Use of insecticides in public areas, especially where children are present, is an increasingly volatile issue, requiring field managers to manage pests by means that are non-hazardous to players, bystanders, and the environment.

Fortunately the past 15 years saw the advent of new kinds of insecticides that work selectively against pest insects, are applied at low use rates, and pose low hazard to people and the environment. Many of these products are more versatile and effective than past ones. Let’s look at current trends in turf insecticides and what may be on the horizon, and also some non-chemical control options for insect pests of sport fields.

Grubs and billbugs

Root-feeding white grubs are the most destructive insects to sport fields in the cool-season and transitional turfgrass zones. Damage from grubs causes turf to die in irregular patches that can be lifted or rolled back like a loose carpet. Grub damage is worst in late summer and autumn. Skunks and other varmints may dig up the turf to feast on the grubs. Masked chafer and Japanese beetle grubs are abundant throughout most of the eastern and central U.S. Asiatic garden beetle and Oriental beetle are troublesome in the Northeast, and European chafer grubs occur from the New England states west across New York to northern Ohio and southern Michigan.

Green June beetle grubs are abundant in the transitional climatic zone. They feed more on decaying organic matter than on living roots, but damage turf by burrowing, uprooting the grass, and pushing up mounds of soil. They commonly are associated with bermudagrass fields, sites with high organic matter, or areas where manure or other organic fertilizers have been used.

Registration of Merit (imidacloprid) and MACH 2 (halofenozide) revolutionized grub control during the 1990s, and recent (2005) registration of Arena (clothianidin) provided a third powerful product for preventive grub control. Residues of Merit, MACH 2, and Arena remain...
TURFACE
ATHLETICS™

Pro League® Red

AN INFIELD CONDITIONER THAT GIVES YOU BRICK RED COLOR WITHOUT THE BRICK.

Unlike infield products such as brick dust or vitrified clay, Turface Pro League Red delivers the rich red color you want plus the infield conditioning you need. Turface Pro League is the only patented infield conditioner that provides superior rainout protection and the ultimate playing surface—with half the tonnage of an aggregate product. For over 40 years, nobody’s done it better. Become part of Turface Athletics today. Call 1-800-207-6457 for tips on improving your field conditions—guaranteed.

www.turface.com

Circle 117 on card or www.oners.ims.ca/5906-117
active for as long as 2-3 months, providing flexibility in application timing. All three products are available in granular and spray formulations.

Merit and Arena, which belong to a relatively new class of insecticides called chloronicotylins, selectively disrupt the insect nervous system. MACH 2 mimics the action of the insect molting hormone, causing a premature lethal molt. All three therefore are target-selective, meaning that they have low inherent toxicity except to insects. They usually provide excellent (>90%) control when applied preventively, before egg hatch. Throughout most of the northern two-thirds of the U.S. the optimal treatment window for preventive grub control is mid-June to mid-July. That timing ensures that fresh residues are in the soil just before and during egg hatch, which for grub pests of sport fields mainly occurs in July and early August. Grub treatments should be watered in as soon as possible to move the residues into the root zone. All three preventive products are, however, relatively forgiving even if rainfall or irrigation is unavoidably delayed for a few days.

Preventive grub insecticides do have limitations. None of them works that well against large grubs, or as "rescue" treatments after damage appears. All three products are highly active against masked chafer and Japanese beetle grubs, the most common and widely distributed grub species. MACH 2 seems to be less effective than Merit or Arena against Asiatic garden beetle, European chafer, and green June beetle grubs, but it may be more active than the others against cutworms and other caterpillars.

The downside of preventive control is that the treatment must be made before the extent of infestation is known. Field managers who reserve preventive treatment for high-risk fields (ones having a history of grubs) or who prefer the "wait-and-see" approach may have to spot-treat grub-damaged areas in late summer. Dylox (trichlorfon) is the most effective fast-acting soil insecticide for such curative or "rescue" situations. Water it in immediately (or apply just before a good rain if there is no irrigation) and keep people off the field for 24 hours after application. Insect-parasitic nematodes, specifically Heterorhabditis bacteriophora, are an option for non-chemical curative control of white grubs.

Avoid rescue treatment for large green June beetle grubs unless you plan for a cleanup. Grubs of that species die on the surface following such treatments!

Billbugs are small weevils (beetles) that lay eggs in turfgrass stems in spring. Their larvae hollow out the stem and crown, and later migrate to the thatch and soil to feed externally on the crown and roots. With heavy infestations, scattered small patches of dead turf resembling dollar spot disease, may merge into large areas of dead grass in June to August. With billbugs, tufts of straw-colored dead grass are easily pulled out by hand, the hollowed out stems breaking off at the crown and showing bits of fine sawdust-like frass at their base.

Merit, MACH 2, and Arena also work well against billbugs. They systemically control the young larvae within grass stems, as well as older ones in the soil. Applied at high label rate from mid-to-late May, they will preventively control billbugs with residues persisting long enough to control white grubs later in summer. Alternatively, billbugs can be controlled curatively using MACH 2 or Dylox in early June, or a pyrethroid (see below) can be applied in late April of early May to intercept female billbugs before they lay eggs in the stems. Consult turf specialists at your state university for proper timing in your area.

Surface-feeding pests
Several caterpillar pests including sod webworms, cutworms, and fall armyworms can damage sport fields by chewing the grass blades and stems. Sod webworms and cutworms feed from burrows in the soil and thatch whereas fall armyworms cling to the grass plants while chewing them to the ground. Spot treating with a pyrethroid insecticide easily controls these pests. Options include Telstar (bifenthrin), Tempo (cyfluthrin), DeltaGard (deltamethrin), Scimitar (lambda-cyhalothrin), and Astro (permethrin). Pyrethroids work fast and are applied at very low rates. Remember this when comparing costs because the price per gallon seems high until you factor in cost per application. Pyrethroids also work well against chinch bugs and other sucking pests. They aren’t effective against grubs because they bind to thatch and don’t reach the root zone. Although pyrethroids have low toxicity to mammals and birds, some formulations are labeled as “Restricted Use” because they’re toxic to fish. MACH 2 also will control turf caterpillars.
Your Ultimate Sports Turf Top Dresser

The Mete-R-Matic XL makes top dressing simple and fast.

The new Mete-R-Matic® XL, specifically designed for sports turf, features the same technologies that made the Mete-R-Matic III the leading top dresser on turf. The patented Chevron belt allows you to accurately and evenly distribute material, regardless of moisture content. The ground drive system assures that your material will be spread evenly, regardless of vehicle speed. Plus, the XL features a larger, 2.25 cubic yard hopper so you get the job done fast. For more information, a demo or to learn more about top dressing call 1-800-679-8201.

TURFCO

1655 101st Avenue NE • Minneapolis, MN 55449-4420 U.S.A • (763) 785-1000 • Fax (763) 785-0556 • www.turfco.com

Circle 118 on card or www.oners.ims.ca/5965-118
For turf caterpillars, liquid applications work better than granules because the objective is to leave residues on the foliage and upper thatch. Withhold irrigation and mowing for 24 hours after the application. Conserve (Spinosad), a reduced-risk insecticide derived from a naturally occurring bacterium, is effective against turf-feeding caterpillars and an excellent choice for sites where use of conventional insecticides might be questioned. Steinernema carpocapsae, an insect-parasitic nematode, is another option for caterpillar control.

Mole crickets and fire ants
Mole crickets and fire ants are the most important insect pests of southern sport fields. Mole crickets cause extensive damage by tunneling just under the surface, physically uprooting and stressing the grass, leading to thinning and weed encroachment. They are especially damaging to newly seeded or sprigged fields. Tawny mole crickets also feed extensively on the roots, stems, and leaves. Heavily infested turf has almost no root system and is easily damaged by sport activities.

The red imported fire ant occurs throughout the southeastern United States. Like stepping on a biological land mine, disturbing a fire ant colony results in a rapid defensive response by worker ants that swarm up legs or other body parts to inflict numerous bites and stings. Fire ant stings cause an intense burning itch, pustule-like sores, and can be life threatening to persons allergic to the venom. Field managers can become entangled in lawsuits should athletes, spectators, or children at play inadvertently stand or fall on the mounds, which may be inconspicuous when during early stages of colony development. The mounds themselves smother grass and cause damage to mowing equipment.

A lot depends on budgets when managing these pests. TopChoice (fipronil) is the premier mole cricket and fire ant control product being used in the southern states. The cost is relatively high, about $180 to $220 per acre for one treatment, but a single broadcast application provides season-long control of both pests. Merit is less expensive and gives good control of mole crickets when applied before or at egg hatch (May to June, depending on latitude). It will simultaneously control white grubs, but has little or no efficacy against fire ants. Arena is in the same ballpark as Merit insofar as mole crickets and grubs, and may also have some activity on fire ants. Some field managers spray as-needed with a pyrethroid (e.g., Talstar) to knock back mole crickets and fire ants. Some recent trials suggest that Allectus, a new combination product containing the active ingredients in Merit and Talstar, may give better mole cricket control than either Al alone. For non-chemical control, try insect-parasitic nematodes, Steinernema scapterisci (Nematac S), targeting larger mole cricket nymphs and adults.

If fire ants are the main concern, baits are cheaper ($10 to 15 per acre, per treatment) and can provide seasonal suppression (e.g., for softball season in spring, football season in fall) with a single application, or sustained suppression with periodic re-treatments. Try the "Texas Two-Step" method (http://fireant.tamu.edu/). The first step is to broadcast a bait insecticide over the entire field. The second step is to spot-treat individual mounds with an approved mound drench, granule, bait, or dust insecticide. Baits containing fipronil (Firestar), Abamectin (Affirm), fenoxycarb (Logic, Award), and hydramethylnon (Amdro) are effective. Advion (indoxacarb) is the fastest-acting fire ant bait. It costs a bit more and provides no real residual effect, but is an excellent "rescue treatment" for use on sport fields.

Sound management reduces need for insecticides
Good turf management can reduce chemical inputs and costs. For grubs, use tolerant turf (e.g., turf-type tall fescue), manage thatch, mow at a reasonable height, and follow a balanced fertility regime to promote a deep, extensive root system with good recuperative potential. Consult your extension turf specialist for local recommendations. Night-flying adults of some insect pests (e.g., masked chafers...
You make it beautiful. The RTV900 makes it easy.

RTV900 Turf Utility
The Kubota RTV900 Turf utility vehicle is designed to make your job a little easier and a whole lot more productive. With a fuel-efficient 21.6 HP diesel engine, 4-WD, power steering, 3-range variable hydrostatic transmission (VHT), hydraulic bed lift and a hydraulic utility valve, it's like having your own fully equipped workstation on wheels.

Financing available through Kubota Credit Corporation.
For product and dealer information, call 1-888-4-KUBOTA, ext. 408
or go to www.kubotaRTV25.com
©Kubota Tractor Corporation. 2006
European chafers, mole crickets) are attracted to lights, so darkening fields when possible during their flight periods may pay dividends. Irrigated turf attracts adult Japanese beetles, masked chafers, and mole crickets, so cutting back on watering during the flights can discourage their egg laying. Tall fescue and perennial ryegrass cultivars that contain fungal endophytes resist billbugs, sod webworms, and chinch bugs. Overseeding with as little as 40% endophytic perennial rye can reduce populations of those pests, and their damage.

Insecticide labels change so read the label to ensure that a product is labeled for your purposes. For more information, the University of Kentucky Entomology Department website has up-to-date information on white grubs (http://www.ca.uky.edu/agc/pubs/ent10.htm) and grub insecticides (http://www.uky.edu/Ag/Entomology/entfacts/trees/ef441.htm). The University of Florida Entomology and Nematology Department (http://entnemdept.ifas.ufl.edu/) is excellent on mole crickets, and Texas A&M University has a state-of-the-art website on fire ants (http://fireant.tamu.edu/).

Daniel A. Potter is Professor at the University of Kentucky. His book Destructive Turfgrass Insects: Biology, Diagnosis, and Control is available from Wiley (www.wiley.com) or Amazon (www.amazon.com).

Fire ant mound. Photo by Eileen Buss, University of Florida.

You’re Always Ahead of the Game with a COVERMASTER® Raincover...

"Very Good... Highly recommended..."

wrote Dunham Wright, Facilities Supervisor, Northeast Louisiana Univ., Monroe, LA.

Dunham’s comments confirm what we hear from the many groundskeepers who use a COVERMASTER® raincover to keep their fields dry and ready for play.

Call us and we’ll gladly tell you more.

The COVERMASTER® Advantage...

• Superior in strength and UV resistance
• Outstanding heat reflective properties
• Light weight - easy to handle
• Widest materials for least number of seams
• Largest choice of weights and colors
• Backed by truly dependable warranties

TARP MACHINE VIDEO!

Call, fax or e-mail for a free video, material samples and a brochure.

CALL TOLL FREE 1-800-387-5808 covermaster.com

E-MAIL: info@covermaster.com

COVERMASTER INC., 100 WESTMORE DR., 11-0, REXDALE, ON, M9V 5C3 TEL 416-745-1811 FAX 416-742-6837

Circle 120 on reply card or www.oners.lms.ca/5905-120

Covers for football and soccer fields are also readily available. TARP MACHINE lets you roll the cover on and off in minutes. TARMATE™ roller comes in 3 lengths with safety end caps.