One bad bounce can
change the course
of the game

No doubt about it, your work affects the game. So when productivity is compromised by equipment that can't stand up to dusty infield, it's never good. Toro designed the new Infield Pro® 5020 with that in mind. It's the only groomer with a completely sealed double-filtration system. The engine stays grime-free, so you can focus on the details of playability instead of breakdowns. See the new Infield Pro 5020 and other Infield Pro models, with their huge line of attachments, at www.toro.com/grounds/sports or contact your Toro Distributor at 1-800-803-8676.
Introducing New HERITAGE® Fungicide for a Winning Turf Season.

Leading off the line-up of disease control products this year is new HERITAGE fungicide. While HERITAGE is the newest fungicide for landscape and sports turf, it also has the broadest spectrum. It scores big in your disease management program by delivering these winning points:

- Provides preventative and curative activity
- Controls a broad spectrum of tough turfgrass diseases including brown patch, Pythium, take-all patch, summer patch, anthracnose and leaf spot
- Only systemic strobilurin chemistry available
- Reduced risk to environmental resources
- Low-risk toxicological profile
- Extended spray intervals, low use rates
- Enhances turf quality

New HERITAGE fungicide for a winning turf season in your disease management program.

For more information, contact your authorized Zeneca Agent, or call Zeneca Professional Products Toll Free at 1-888-617-7690. Labels and MSDSs available 24 hours a day, seven days a week via Fax on Demand. Please call 1-800-640-2362.

www.zenecaprofprod.com

Zeneca Professional Products

Always read and follow label directions carefully. HERITAGE® is a registered trademark of a Zeneca Group Company. © 1999. Zeneca Inc. Zeneca Professional Products is a business of Zeneca Ag Products, a business unit of Zeneca Inc.
Cover Story
8 Growing Bermudagrass in Kansas
Sam Ferro from Turf Diagnostics and Design teams up with Blue Valley School District Grounds Manager Jody Gill to show how new strains of bermudagrass are pushing the turfgrass further north.

Main Events
14 Native-Soil Field Management
Dan Bergstrom, athletic field manager for the University of Kentucky, gets to the heart of native-soil field maintenance.

18 Field Focus: UC-Davis Softball Field
Bob Tracinski profiles STMA’s 1998 College Softball Field of the Year.

23 Sodding Sports Fields
According to Jim Puhalla, the secrets to good sodding are really not secrets at all. His article reveals techniques to produce a successful installation.

Line-Up
Front Office 6
Tip o’ the Month 6
Calendar 7
STMA Message 7
STMA In Action 26
Advertisers’ Index 37
Classifieds 37
G&A 38

On the Cover:
Harvesting sprigs from the Blue Valley School District Agronomy Center.

Courtesy: Jody Gill

4 sportsTURF • http://www.sportsturfonline.com
The other seventeen are just as beautiful as this one. Obviously there's a Goulds pump at work.

You worry about a lot of things when you're maintaining a course in a climate like this. Thanks to Goulds booster pumps, your water system doesn't have to be one of them. Nothing is more durable and reliable than a Goulds pump. And nothing is more versatile, because Goulds Pumps offers three times the pump selection of any other manufacturer.

Goulds pumps feature a space-saving design and all-stainless steel construction. Standard NEMA motors permit a wide variety of options and fast field service. A unique seal housing design eliminates entrapped air and heat that can cause premature failure.

Call us for your autographed FREE NASCAR POSTER

Your source of information. Monday to Friday 8 am to 5 pm EST. Call the Goulds Pump Information Center™ at 315-255-3378 extension 431 and request our complete product brochure. Goulds Pumps is ISO 9001 registered.

Over 150 Years of Excellence in Every Pump.
Soil Stabilizers

Sports turf managers are constantly searching for tools to help keep their fields safe and playable through extended seasons. Over the years, several companies have introduced soil stabilizing products to help strengthen turf against the punishment of athletic competition.

While there's no shortage of opinions on the effectiveness of each individual technique, supporting research is more difficult to come by. I can't presume to tell you which product, if any, is right for you, but it's always important to know what's out there.

In a previous column, I discussed the use of crumb rubber topdressing to stabilize and strengthen soil. I urged readers to explore recycled products that could benefit both fields and the environment. Now, I turn my attention to products that are originally manufactured as soil stabilizers.

Polypropylene

Several athletic turf soil inclusions currently available are made up of polypropylene. This thermoplastic material is safe, non-toxic, and non-carcinogenic. Fibers are not bio-degradable; they won't break down from contact with naturally occurring chemicals, alkalis, and acids.

The following describes several currently available products that use polypropylene materials to stabilize athletic turf:

- Turfgrids polypropylene fibrillated fibers are incorporated directly into a field's root zone. The product claims to give additional strength and stability by reinforcing the base soil and root structure.

 When mixed into the soil base, the fibers provide a support system for developing roots. They act as underground anchors to give roots three-dimensional strength and prevent surface break-up.

- Netlon Advanced Turf consists of small pieces of polypropylene mesh randomly oriented in a turfgrass root zone. Blended into the growing medium, the mesh elements interlock with each other and with root zone particles. The goal, again, is to create a stable, three-dimensional structure as the roots become entwined with the polypropylene material.

 The system claims to help turf resist compaction, drain more quickly, develop greater root density and depth, experience reduced divot size, and recover from injury quickly.

- SportGrass uses polypropylene to create a sort of hybrid natural-grass/artificial-turf surface. Synthetic polypropylene blades tufted into a woven backing are imbedded in a layer of amended sand, and a natural-grass surface is installed over the top. The fibrillated synthetic blades invite the root system to grow through the fibers and the horizontal backing.

 Like the other products mentioned, SportGrass operates on the principle of anchoring roots. The system claims to maintain a level and consistent surface through heavy-use schedules, and to protect the crown as well as the root zone.

- The GrassMaster system directly inserts polypropylene tufts up to 20 centimeters into established turf at two-centimeter intervals. On average, only three fibers are injected for every 97 blades of natural grass.

 Again, the intention is to encourage roots to entwine with the synthetic fibers, combining the strength of artificial turf with the benefits of natural grass.

 GrassMaster fields are ready for high-intensity play immediately after installation. The system claims to increase field durability even in high-use situations.

Tip o' the Month

A Sound Environment

by OPEI

If you're planning any equipment purchases this year, invest in the health of the grounds you maintain by making environmentally sound choices. Manufacturers now offer equipment that runs up to 70-percent cleaner than previously available products. When available, choose Environmental Protection Agency (EPA)-certified engines to help keep the air clean.

The Outdoor Power Equipment Institute also offers these suggestions to help keep your existing equipment environmentally friendly:

- Keep all outdoor power equipment in good condition through regular maintenance; keep blades sharp and all vents and working components clean and free of obstructions.

- Plan ahead for efficient outdoor maintenance by clearing work areas of debris, keeping pets and children away from work areas and machines, and having all attachments and supplies readily available.

- Mow, edge, roto-till, and trim in the most efficient patterns to save time and fuel.

- Save lawn clippings, and spread them around plantings to help hold moisture in the soil and inhibit weed growth.

- Recycle yard waste by starting a compost pile. Compost becomes an excellent soil addition. Use a chipper/shredder to process leaves, branches, and other waste into forms suitable for composting.

OPEI is a trade association whose membership is primarily composed of US manufacturers of powered lawn and garden maintenance products, components, attachments, and services.
June 27-July 1
Floyd Perry’s Groundskeepers Management Academy, Nashville. Other dates and locations: July 5-9, Indianapolis; Aug. 16-20, Bethel, CT; Aug. 23-27, Colonial Heights, VA; Aug. 30-Sept. 3, Orlando; Sept. 12-16, Dallas; Sept. 19-23, Denver; Oct. 10-14, Davis, CA. Contact Grounds Maintenance Services: (800) 227-9381.

July 16-18
Turfgrass Producers International (TPI) meeting, Holiday Inn South, East Lansing, MI. Contact TPI: (800) 405-8873 or (847) 705-9898.

July 21-23
TPI Summer Convention & Field Days, Holiday Inn South, East Lansing, MI. Contact TPI: (800) 405-8873 or (847) 705-9898.

July 24-26
16th annual International Lawn, Garden & Power Equipment Expo (EXPO 99), Kentucky Exposition Center, Louisville. Contact Sellers Expositions: (800) 558-8767.

July 27

August 18
Michigan Turfgrass Field Day, Hancock Turfgrass Research Center, Michigan State University, East Lansing, MI. Contact Kay Patrick: (517) 321-1660.

Correction
In the April 1999 issue of sportsTURF, improper credit was given to the second image in the article “Laser Grading: Know what you’re getting.” The image was supplied by Grove Teates of Alpine Services, Inc.: 5313 Brookeville Rd., Gaithersburg, MD 20882; phone: (800) 292-8420; fax: (301) 968-7901; e-mail: asi@alpineservices.com. We apologize for the oversight.

Stephen Guise, STMA President
(714) 704-0403

June 1999
Growing Bermudagrass in Kansas

by Jody Gill and Sam Ferro

One school district’s turfgrass solution

Blue Valley School District comprises 91 square miles in the Johnson County suburbs of Kansas City. In early 1995, the school district embarked on an ambitious upgrade of its District Activity Center (DAC). Improvements included new baseball and softball fields.

That same year, the Midwest experienced “100-year flood rain levels.” These intense rains brought light to some field problems at the DAC. The school district brought in Turf Diagnostics and Design (TD&D) to evaluate the problems and suggest improvements.

TD&D made several recommendations, including improving the grades, adding sub-surface drainage, and changing the warning tracks. However, company President Chuck Dixon had something more radical in mind. He suggested the school district switch from the traditional cool-season grasses that were in use (rye, fescue, and bluegrass), to warm-season bermudagrass.

School Board members, parents, and district boosters expressed many doubts about the plan. Bermuda simply wasn’t used in Kansas, and many felt it would never survive the occasionally harsh winter weather.

However, a newer strain of common-type bermuda, Quickstand, had the potential to withstand Kansas winters, which generally experience low temperatures of -10 degrees F, and occasionally -20 degrees F. The particular strain featured winter hardiness, quick spring green-up, and the safety of bermuda compared to the rough and clumpy tall fescue fields that were common in the area. Bermuda also offered significant heat tolerance advantages over bluegrass fields, and Kansas summers often experience long stretches of 90- to 105-degree F weather.

First summer

When the school board finally agreed to the proposal, we solicited several local turf farms to grow the Quickstand. No one was interested in the project, so the district set out to develop a turf farm of its own. The school board set aside a 10-acre site, and the Blue Valley School District Agronomy Center was born.
Contractors tilled the farm and applied a 10-20-20 fertilizer in June 1996. They applied agricultural lime to all areas that would be sprigged to increase the soil pH to between 6.0 and 7.0. Sprigging at a rate of 750-bushels per acre began late in the month.

A cropduster applied ammonium nitrate during the first and second weeks of sprigging due to saturated soil conditions. Fertilization in the third week consisted of a 10-20-20 fertilizer, plus liquid chelated iron and root development mix applications. Combined with heavy irrigation the first two weeks and mowing heights of less than one inch, this routine allowed sprigs to grow and spread rapidly.

Over the next several weeks, weekly fertilizer kept the bermuda-grass growing aggressively. Irrigation was scaled back as the sprigs rooted and started to grow laterally. By the time the farm was turned over to the Blue Valley grounds team at the end of August 1996, the nearly fully established Quickstand exhibited excellent color and vigor.

Temporary setback
Rain delayed a planned fall 1996 harvest. The school district chose to forgo a risky November harvest in favor of cool-season sod installation. A rescheduled summer 1997 harvest would benefit other sites.

In late August, nitrogen fertilization was stopped at the farm to discourage top growth. Increased phosphate and potassium fertilization would prepare the turf for winter.

As dormancy approached in mid-October, the farm experienced vertical growth of 0.5 inches per week and rhizome elongation of 1.5 inches per week. Rooting had increased three inches in one month.

The final mowing height was set at 2.5 inches. The turf went fully dormant in mid-November. Five months
Harvesting and planting

The winter of 1996-97 brought no snow cover, and the lowest recorded temperature measured -17 degrees F. The bermudagrass survived with no winterkill, and the stolons and rhizomes remained thick all winter. The turf was fully green by mid-May.

Summer 1997 gave the Blue Valley crew its first opportunity to harvest and plant sod and sprigs from the turf farm. They chose four of the school district's athletic fields for renovation.

One month before the harvest, the crew sprayed each field with Roundup, raked to remove vegetation, and resprayed. They performed fertility tests, and made final preparations for sprigging and sodding.

In early June, the crew harvested and planted sprigs at a district high school football field. They moved on to two middle school game fields in late June/early July. Each field was sprigged at 900 bushels per acre.

Fully established by mid-July, the sprigged high school field performed well by August. The middle schools were fully established by early September.

Large-roll sod harvested from the farm also provided a new surface for the DAC football field in early July.

Experimental changes based on lessons learned allowed reductions in both costs and establishment time.

Harvested sprigs were planted at two high school football practice fields at the beginning of June, and at two middle school football fields early in July. A doubled sprigging rate of 1800 bushels per acre resulted in full turf establishment within five weeks.

Large-roll sod installed at a new middle school football field September 15 hosted games in early October. As before, all harvest areas re-established within six weeks.

Experimentation

To more efficiently convert fields to Quickstand, the Blue Valley grounds crew began experimenting with simple oversprigging into existing cool-season turf. To prevent competition from the existing turf, the crew killed the fields with Roundup 10 days before sprigging. Two days before sprigging, they saturated the fields with water to allow maximum penetration of sprig planter presswheels.

The procedure cut labor and equipment costs by 50 percent compared to the first bermuda conversion in 1997. However, the new, preferred method applied only to fields where grading was not necessary to re-establish the crown.

Performance

Though it's still dormant in early spring, the bermuda is thick and dense enough on most fields to support heavy play without overseeding. Even when damage occurs in the spring, the bermuda rapidly recovers on its own during the heat of summer.

The school district closes and fences off all of its bermuda fields in early November to maintain the thick, dense blanket of turf and stolons achieved by raising mowing heights in September and October. This provides insulation to protect the rhizomes from extreme winter temperatures and possible winterkill. Fields are irrigated as needed during the winter to prevent plant desiccation.

Operational changes based on lessons learned allowed reductions in both costs and establishment time.

Harvested sprigs were planted at two high school football practice fields at the beginning of June, and at two middle school football fields early in July. A doubled sprigging rate of 1800 bushels per acre resulted in full turf establishment within five weeks.

Large-roll sod installed at a new middle school football field September 15 hosted games in early October. As before, all harvest areas re-established within six weeks.

Experimentation

To more efficiently convert fields to Quickstand, the Blue Valley grounds crew began experimenting with simple oversprigging into existing cool-season turf. To prevent competition from the existing turf, the crew killed the fields with Roundup 10 days before sprigging. Two days before sprigging, they saturated the fields with water to allow maximum penetration of sprig planter presswheels.

The procedure cut labor and equipment costs by 50 percent compared to the first bermuda conversion in 1997. However, the new, preferred method applied only to fields where grading was not necessary to re-establish the crown.

Performance

Though it's still dormant in early spring, the bermuda is thick and dense enough on most fields to support heavy play without overseeding. Even when