Our New Drainage Pipe Has Grounds For Consideration.

Our vertically constructed pipe creates new options for your next turf drainage project.

For years, professional groundskeepers, golf course superintendents, landscape architects and contractors have relied on our round 4” pipe as the standard when a drainage system was required.

Today, these same professionals can depend on our new vertically constructed AdvanEDGE® Pipe, specifically designed to accommodate projects which require minimum turf disruption and fast installation.

Consider these advantages: • Narrow 4” wide trench • No gravel required • Up to 500 foot coils • High density polyethylene (non-corrosive) • Complete selection of fittings • Unrestricted flow with a high strength core • Typar geotextile materials for sensitive soils • Quick installation • Lower cost • And, it’s a pipe!

Advanced Drainage Systems Inc., has served the grounds maintenance industry for over 20 years. Try our new AdvanEDGE® Pipe for your next drainage project. We feel you will agree... there are grounds for consideration!
Drainage

amount of water that sports turf needs. Advanced controllers now enable turf managers to adjust irrigation cycles to fit weather conditions. They allow turf managers to repeat short cycles with a delay to prevent runoff.

Sprinkler heads and pumping stations have been refined to apply water at a rate that the soil can absorb. Soil moisture sensors are being used to override irrigation schedules, and on-site weather stations can feed data to controllers to help the manager regulate water use. These advances have taken much of the guesswork out of irrigation.

Subsurface Water. Controlling surface water is not even half the battle. One source of moisture to which turf managers are beginning to pay more attention comes from below... subsurface water. Golf courses and recreational areas are frequently built on flood plains, coastal land and other low-lying areas. High water tables and subsurface water can confound efforts to control soil moisture. You will understand why later in the article. Poor-quality subsurface water can also contaminate the root zone and complicate turf management.

The presence of a water table within six feet of the surface indicates the need for improved subsurface drainage,” warns Dr. James Beard of Texas A&M University. A high water table interferes with the removal of excess water from beneath the root zone, he adds.

A network of drainpipe prevents subsurface water from saturating the soil above—in addition to removing excess water that percolates down from the surface. So drainpipe can be used to artificially lower a high water table. As long as the water collected by the drainpipe flows or is pumped away, a new, lower water table will be created.

Water Movement. The most difficult aspect of drainage to understand involves how water moves into and through soils.

By observation, we know that water is pulled downward by the force of gravity. But there are many other forces which can counteract gravity. For example, water will move in a sponge or cloth from a wet area to drier areas regardless of direction. The same forces are at work in soils.

One of the best explanations of soil-water movement was presented by Albert Marsh of the University of California at Riverside in the book Turfgrass Science, published by the American Society of Agronomy. Marsh brought a refreshing clarity to the complicated subject.

Water movement depends greatly on soil texture. That texture is determined by the size and shape of the solid particles in the soil and the amount of open space around them. This space is commonly referred to as pore space, and may total 35 to 70 percent of the total soil volume.

Turfgrass roots grow in these spaces by utilizing the air, water and dissolved nutrients found in them. When a soil becomes compacted by frequent surface traffic, the volume of pore space is reduced, hampering root growth, aeration and drainage. This is the primary justification for regular mechanical aeration of the top two to three inches of soil, the portion of the soil most susceptible to compaction.

Clay soils consist of very small, plate-shaped particles. While the total volume of space around these particles may be the same as in other soils, the individual spaces are much smaller. Pore spaces are larger in loam soils and largest in coarse, sandy soils.

Under normal circumstances, water does not flow through soil pore spaces like sand through an hourglass. Instead, water coats the soil particles as a film and flows from one particle to another in film form.

This film flow is slowed and even stopped by two forces. The first is the force that holds one water molecule to another, called cohesion. Examples of cohesion are when a drop of water builds up at the end of an eyedropper without falling... or the presence of droplets on a cold glass on a hot, humid day.

Soil particles hold onto water molecules by a second force called adhesion. The attraction between the soil particle and the water is greatest when the film is very thin, and decreases as that film gets thicker. As the amount of water in the soil increases, so does the thickness of the film.

Contact between soil particles and film allows the forces of cohesion and adhesion to interact to move water from wetter to drier particles. Since the contact between particles is greater in fine-textured soils than in coarse soils, film flow is also greater. This is also why fine-textured soils hold water more tightly than sandy soils.

When soils of different texture are in...
METRAC 3003K
THE TRACTOR DESIGNED FOR STEEP SLOPE WORK
ALSO IDEAL FOR ANY TYPE OF MOWING

STANDARD FEATURES

38 H.P. Kubota Engine
8 Speed Forward
8 Speed Reverse
1 Lever Shift From Forward To Reverse
ROP's
15 Inch Tires And Wheels
Power Steering
2 Or 4 Wheel Drive
Crab Steering (With Rear Wheel Lock Out)
Front And Rear P.T.O.
Front CAT 3 PT. Hitch (With Float)
Rear Eye Hitch
Oscillating Seat
Seat Belts
Lights (Head, Tail, Warning Flasher)
1,500 Lb. Front 3 Pt. Lift Capacity

SEE THIS MACHINE AT THE
GCSAA SHOW, FEB. 11, 12, 13, 1989
ALSO THE NEW 5 GANG HYDRAULIC
DRIVE MOWER MOUNTED ON THE
METRAC 3003K.
Drainage

continued from page 32

layers within a root zone, the contact between soil particles between layers is not as great. For that reason, film flow is disrupted. This is why a fine soil will not drain well into a coarser soil, or vice versa. Sub-surface layers are a major cause of poor drainage.

Film flow is sometimes referred to as capillary movement or unsaturated flow. When all pore spaces are filled with water, the soil is called saturated. This is an unhealthy situation for turf since the water occupies the space previously available for vital gases. Beneficial microorganisms in the soil which require oxygen can't function properly, and the necessary exchange of gases between the roots and soil air is disrupted.

At the point of saturation, the forces of cohesion and adhesion approach zero. It is at this point that water will begin to flow by gravity through large pore spaces in the soil. Since sand has the greatest percentage of large pore spaces, saturated flow is greatest in sandy soils. Saturated flow is poor in fine-textured soils.

This is also the point at which water will move from a fine soil into a coarser one, or from soil into perforated drainpipe or French drains.

Marsh cautioned that the soil immediately above a subsurface layer or drainpipe will be wetter than the rest of the soil. He advises that drainpipe or layers of gravel be placed beneath the root zone of turf-grasses. Marsh said many people presume that a gravel layer should provide excellent drainage and are surprised when excessive wetness above the layer is revealed.

For this reason slit trenches filled with sand should extend all the way to the surface of the soil. If soil is placed on top of the sand, it will have to become saturated before water will begin flowing into the trench. Sand will also filter out fine soil particles.
389,000 reasons you should be buying Ryan.

Only Ryan can give you double the tines for double the holes. So, instead of 194,500 holes over a football field you get 389,000 in the same amount of time. Nobody gives you greater flexibility to cover all of your aeration requirements on large area turf.

And nobody gives you a wider selection of tines to choose from. Coring tines for regular soil. Slicing tines for drier soil. Open spoon tines for renovation. There's a set of tines and a towable Ryan aerator that's just right for you.

For large, level turf areas, the Ryan Tracaire® covers a wide 6-foot swath of ground. For undulating areas, the Ryan Renovaire® is the only tractor-drawn aerator available that follows the contour of the land so high spots, as well as low spots, get deep, even penetration. For smaller grounds, the Tow Lawnaire® and 3-Pt. Hitch Lawnaire® can be pulled by most tractors.

All give you maximum penetration at speeds up to 10 mph. All are designed to provide years of heavy use. All are backed by the name synonymous with great turf maintenance — Ryan.

For more information or a free demonstration, contact the Ryan dealer nearest you today. Or call toll-free: 1-800-228-4444.
Drainage continued from page 34

ticles that can plug the openings in drain-
pipe or filter fabric wrapped around them.

Percolation. The flow of water through
the soil is known as percolation. When
designing a green or field, the architect
should select a soil mixture that will provide
a percolation rate approaching the rate of a
typical rain shower. Since the uniformity of
the soil mixture over the area is important,
attention should be paid during construc-
tion to make certain that all soil components
are thoroughly mixed.

Under favorable conditions turfgrass
roots will grow a foot or more deep. When

Poor infiltration is
often the result of a
heavy thatch layer in
moderate-to
low-maintained areas.

TWO-MAN DRILL WITH
MANUALLY OPERATED
CLUTCH.

See ground hog's full line of rug-
ed earth drills and trenchers
for speed, and durability!

Write or Phone for details on these real money-makers for contractors and rental yards.

GROUND HOG INC.
P.O. Box 290 / San Bernardino,
California 92402 / Phone (714) 888-2818
Outside California: (800) 922-4680

potable. Model D-S
has a heavy duty
gear box and am-
plicable engine power
for dense soil.

PORTABLE TRENCHER WITH
AUTOMATIC CLUTCH

Quickly digs 3½" trench to depth
of 12". Professional type Model T-4
is powerful, lightweight and
equipped with pneumatic flota-
tion tires, and 5 HP engine.

powerful - dependable

TWO-MAN DRILL OPERATED
by midfielder. Light
rugged, and por-
table. Model T-M cuts labor costs
in half!!

Infiltration. A soil may have a reasonable
percolation rate, yet puddles still form on
the surface following rainfall or irrigation.
The problem is poor infiltration. Many
things can slow infiltration. They include
compaction, an increase in the amount of
organic matter in the surface soil, resod-
ding with turf grown in soil of a different tex-
ture, and development of a heavy
thatch/mat layer.

"Poor infiltration is frequently the result of
a heavy thatch/mat layer that has developed
over time in moderate- to low-maintained
areas," reveals Don Hogan, an engineer of
sports surfaces in Seattle, WA. Further-
more, fields or turf areas that have been
flooded with turf grown in soil of a different tex-
ture, and development of a heavy
thatch/mat layer.

The infiltration rate also depends upon
the texture of the soil surface. A level sand
surface will allow roughly an inch of water
per hour to infiltrate, while a level clay sur-
face allows only a tenth of an inch to
infiltrate in one hour (See table for other
rates).

continued on page 38
Wet or Dry
Pene-Turf Solves Soil Water Problems

In wet weather, Pene-Turf makes soil more permeable, aiding drainage and reducing runoff.

In dry weather, Pene-Turf means better availability of capillary water to keep grass from drying out.

For total soil maintenance, you can’t beat Pene-Turf Soil Treatment. Extensive university and independent tests prove Pene-Turf makes soil more permeable and less plastic. That means reduced erosion problems...better drainage in wet weather and better moisture availability in dry weather...and better pesticide and herbicide incorporation.

Pene-Turf...a cost-effective, basic part of any good management program.
For more information, see your Pene-Turf representative today!

FOUR STAR AGRICULTURAL SERVICES, INC.
2275 N. State Road 1, P.O. Box 463, Bluffton, IN 46714
Toll-Free: 1-800-348-2608
Indiana: 219-824-5384 Collect

This product is available as Perk Soil Treatment in the following states: AK, AZ, CA, CO, HI, ID, MT, NV, OR, UT, and WA.
The slope of the surface also affects infiltration. Sloped portions of large, undulating greens may have a percolation rate half that of level areas. For this reason, irrigation schedules should be set to the slowest infiltration rate on the green, which would be the sloped portion.

Infiltration can vary within a turf area for other reasons, complicating both drainage and irrigation. Some surface soils and thatch can actually repel water by interrupting film flow. This condition is called hydrophobia. It is detectable by noticing turf that shows wilting symptoms before surrounding turf, and by taking soil core samples. Wetting agents can be applied to restore film flow to hydrophobic soils or thatch.

Aerification, slicing and light verticutting can be utilized to open up hydrophobic soils. Mixing soil cores and topdressing into the surface following aerification will also help reestablish film flow of water.

Frequently, in golf course and sports turf maintenance, natural infiltration and percolation are inadequate to keep turf areas safe and in play. Drainage is simply not fast enough between the surface and the drainpipe below. In such cases, natural drainage must be supplemented with “bypass” drainage.

“Water will not pass through most soils at a rate which is satisfactory for sports turf,” states Geoffrey Davison, president of A. F. Trenchers, Sportsturf Division, in Cambridge, England. In cases where rebuilding turf root zones to a sufficient depth with sand/soil mixes is either too expensive or too disruptive, Davison recommends bypassing the existing soil’s drainage. His Cambridge system utilizes an intensive, interconnected matrix of pipes and

SOIL TYPES VS. WETTED PATTERN

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Level</th>
<th>Sloping</th>
<th>Steep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy (Coarse)</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Loam</td>
<td>0.25</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0.15</td>
<td>0.1</td>
<td>0.07</td>
</tr>
<tr>
<td>Clay</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Infiltration rates, inches/hour

FOR QUALITY TURF & INJURY AVOIDANCE ALL SEASON LONG

DISCOVER THE

Aer-Way

ADVANTAGE...

FAST, EFFICIENT, LOW COST, LOW MAINTENANCE TURFGRASS AERATION

AERWAY USERS

- Chicago White Sox
- Los Angeles Raiders
- Seattle Seahawks
- Boston Red Sox
- Detroit Tigers
- Cincinnati Reds
- Washington Redskins
- Miami Dolphins
- Texas A&M University
- Vanderbilt University
- Victoria University

SEVERAL MODELS AVAILABLE, WITH:

- 28” TO 86” SWATH
- PULL-TYPE OR 3 POINT HITCH
- 5”, 6½” AND 8” TINES
- HYDRAULIC LIFT

The unique patented design fractures the soil between the tines enhancing the soil profile and its natural capillary action. This eliminates ponding and allows air, moisture and fertilizer to get to the root system maximizing growth and greener turf.

The “AER-WAY” now comes standard with a full width weight box, tow bar and parking stands, and optional passive or precision overseeders.

CONTACT YOUR AER-WAY DISTRIBUTOR, OR CALL: (800) 228-8032

DESIGNED ESPECIALLY FOR HARD COMPACTED TRAFFIC & PLAY AREAS.
sand drains, combined with carefully controlled sand topdressing to provide an immediate exit route for surplus water without its passing through the soil. The elements of the system are customized for each site based upon a series of calculations. Specialized equipment is used to install the components with minimal surface disturbance.

Pipes and/or prefabricated drainage structures move a greater volume of water than sand or gravel of the same size, explains Dennis Hurley, president of Turf Drain Inc., Marrero, LA. "Drainpipe creates air space in which water can move," says Hurley. "A 3/4-inch-wide vertical drainpipe creates as much air space as a 2 1/2-foot-wide column of gravel or a 10-foot-wide column of sand of the same depth. That's a huge difference."

Turf Drain, ADS, Akzo, Lundin and Warren's are among manufacturers of vertical-bypass drainage structures. These products can be installed quickly with small, economical trenchers with little surface disturbance. "Obviously, they must be installed deep enough below the surface to be out of reach of aerifiers," explains Hurley. "Then fill the trench to the surface with sand, not gravel." Sand prevents silt and fine soil particles from clogging the geotextile wrapper of the drains.

Water does not enter the top of bypass drainpipe initially. First it moves downward, at the rate allowed by the sand, to the bottom of the trench where the backfill starts to become saturated. As the level of saturation rises to the bottom of the pipe, water begins to enter the lower slots. Water will not enter the top slots until the pipe nears capacity.

The spacing of bypass drainage should be determined carefully. Too much drainage can be as much a problem as too little—and the use of bypass drainage without irrigation is not advised.

First determine how much water needs to be removed, and how quickly. A golf course or sports field located in a region where storms can dump up to two inches of rain per hour should have closer spacing than in an area where one inch of rain per hour is typical. If a facility can afford two hours for a field to drain, the spacing can be larger than where immediate removal is necessary.

The spacing on sloped sites should be closer than on flat sites. Since heavy, fine-textured soils hold onto water longer, spacing for these should also be closer.

Manufacturers and their distributors can tell you how much water a particular drain structure transports in gallons per minute. They can also help you calculate how many gallons of water fall over an area per minute to match drainage with rainfall. Warren's Specialty Products has developed a computer program to determine spacing based upon all these factors.

In general, spacing will range from eight to 15 feet for greens and 15 to 60 feet for fairways and athletic fields, says Hurley. "It depends largely on site conditions."

Bypass drainage is proving to be a practical way to renovate older, poorly designed systems without major reconstruction.

Better drainage and irrigation give the manager the control he needs to increase the durability and condition of natural sports turf. Superintendents can speed up greens for tournaments and sports turf managers can reduce compaction and improve durability of fields by reducing soil moisture before events.

They can lower surface moisture to discourage encroachment of annual bluegrass or the development of diseases. They can also increase soil moisture temporarily when aerifying, overseeding, or applying fertilizers, insecticides and soil herbicides.

The control provided by drainage reaches nearly every phase of turf maintenance.

That is why drainage is said to be the most important aspect of sports turf design, construction and maintenance. Good drainage is an inescapable precondition of high-use recreational turf. Without it, the sports turf manager is trying to balance on a tightrope—without a safety net to catch him in case he falls. It's too risky.

The bottom line is, according to Hogan, "If you can't afford proper drainage, you're going to waste money on everything else."

Take the sweat out of trenching with Trenchmaster. Sturdy steel construction, but light enough for easy loading and operation by one man. Ease of cleanup, no compaction and no turf damage means fewer customer complaints. Trenchmasters trench up to 7" or 12" deep and from 10 to 30 feet per minute. Your choice of three makes of industrial engines. New rotors are available for trenching in hard clay and rocky soil.

For further product or dealer information, call or write:

BROWN MANUFACTURING CORPORATION
Route 3 • Ozark, Alabama • 36360
(205) 795-6603

Circle 196 on Postage Free Card

February, 1989 39
THREE COMPLEXES HONORED IN BASEBALL DIAMOND AWARDS

Jim Kelsey (left) and Baseball Diamond of the Year Award winners (l. to r.) Ron Timpanaro, Paul Thomas, Joe Ardolino, and Greg Petry.

All three of the 1989 Baseball Diamond of the Year winners were present at the First International Sports Turf Conference at Dodgertown in Vero Beach, FL, last month to receive their awards.

Ron Timpanaro, field supervisor of Jack Russell Stadium in Clearwater, FL, had the shortest journey of all the winners. He captured the professional diamond award for his work at the home stadium of the Clearwater Phillies, the Class A farm team of the Philadelphia Phillies. "Minor League parks should be the same quality as Major League parks!" exclaimed Tipanaro. "We are all striving to make it to the Majors some day.

Greg Petry traveled from Waukegan, IL, to receive the award for best diamond in the school, municipality and park category. He is superintendent of parks for the Waukegan Park District. Petry and his staff were honored for their commitment to detail and maintenance of Al Grosche Field, one of 27 fields maintained year-round by the park district.

The best college diamond of the year award was presented to Joe Ardolino, assistant athletics director for Towson State University in Towson, MD. Ardolino shared the award for renovation of Burdick Field with Supervisor of Grounds Paul Thomas.

The awards are jointly sponsored by sportsTURF magazine, the Sports Turf Managers Association, and Beam Clay baseball infield mixes. They were presented by James Kelsey, president of Partac Peat Corp., producer of Beam Clay.

The stories behind each facility will be published in sportsTURF during the next three months.

CUSHMAN CHANGES NAME

OMC Lincoln, headquartered in Lincoln, NE, has changed its name to the Cushman Division of Outboard Marine Corporation. The original company, Cushman Motor Works, was founded in 1901 by Everett and Clinton Cushman.

The company became a subsidiary of Outboard Marine Corporation in 1957 and an operating division in 1961. But it continued to operate as Cushman Motors until 1972, when it was officially designated the OMC Lincoln Division.

Because of the strong market identity for Cushman products, Outboard Marine decided to redesignate the division as Cushman. The division's product names now include Cushman, Ryan and a recent addition, Brouwer.

TOO TOUGH?

If you're transplanting twigs, you don't need a Big John.
If you're transplanting serious trees, you need a serious transplanter.
Call us. We're serious

BIG JOHN
TREE TRANSPLANTERS
P.O. Box 608, Heber Springs, AR 72543
5611 S. Calhoun Rd., New Berlin, WI 53151
1-800-643-8039 In Wis. 414-679-0318