Winterizing Irrigation Systems
Procedures That Avoid Problems

As managers of high-use recreational facilities realize the futility of maintaining turfgrass without irrigation, all types of systems are being installed, from the hottest regions of the country to the coldest.

Irrigation provides a reliable, consistent level of playability for turf during periods of drought or irregular rainfall. Today there are no boundaries for irrigation—and sports turf maintenance is changing as a result.

The vital role of irrigation for recreational turf has also prompted parks, schools, golf courses, universities, resorts and stadiums that already have irrigation systems to convert from manual to automatic control, add sophisticated pump stations, and upgrade sprinkler heads.

An investment in irrigation goes beyond design and installation. Regular maintenance is critical, in order to preserve the operational design of the system from year to year. Advances in controllers have eliminated much of the labor involved in operating irrigation systems. However, controllers have not replaced the human eye when it comes to troubleshooting.

Even though most of an irrigation system is out of sight, it should not be out of mind... especially during the winter. Not only can freezing temperatures turn water into an enemy, procedures used to remove water from the system can damage components if the turf manager is not careful. Equally delicate is the process of recharging the system in the spring.

The simplest explanation of an irrigation system is a series of interlinked containers full of water. Pressure exerted on the water at the source pushes it through pipes to valves that hold the water in chambers. Upon opening, the valve allows the pressure from the source to force water through more pipes to the sprinkler heads for distribution.

All components are designed to hold and move water within a certain pressure range and rate of flow. When conditions exceed these ranges, the pipe, fittings, valves and heads are all in danger. That is why irrigation system designers go to great lengths to select components and provide extensive specifications and details for installation.

When water freezes, it expands. If it is confined as it freezes, the water will exceed the burst strength of irrigation components, including those made of metal.

For this reason, any portion of an irrigation system below the frost line must be drained in the fall. This process is termed winterization. If properly done, it takes just a few hours and removes water from all components susceptible to freezing during the winter.

In cold regions of the country, irrigation systems, especially those in the colder regions of the country, should be installed with drainage in mind. Large systems need to be drained or blown out one section at a time. Emergency shut-off valves enable you to isolate one section from another. Pipe in each section should slope to low points, where drain valves are installed in gravel sumps.

A system without drains or graded pipelines is far harder to drain than one installed with drainage in mind. Yet even a system with adequate emergency gate valves, drain valves, and pitched piping will not survive poor drainage procedures.

To help avoid such costly failures, we consulted with specialists in winterizing at two irrigation manufacturers, Buckner of Fresno, CA and Weathermatic/Telsco of Dallas, TX. Their "inside information" figuratively puts you within the pipe itself.

When draining an irrigation system, consider yourself as an air mass crawling inside the pipe and pushing a ball the size of the inside diameter of the pipe to force all the water ahead of you. The water will remain in front of you until you provide an opening—a sprinkler, quick-coupling valve, or drain valve—to let the water escape from the pipe.

You must always look back to see that you have not forced any water behind you, as might happen in a loop pipe system, or when not starting the drainage process at the water source.

The following drainage procedure, offered by Buckner, will deal with a properly designed and installed system, and should show the need for adequate drainage provisions.

- Install two or more one-inch or larger air connections in the water-supply discharge pipe, with a gate valve between the air connection and the pipe. Air may be added through quick-coupling valves, but Weathermatic's Don Cooper cautions that air coming out of an air compressor is hot enough to damage plastic piping adjacent to the valve.
- Locate a 250-cfm or larger air compressor (two 125s will do) with a hose and fasten it to your air connections.
- Close all valves that could permit water to flow from the irrigated area back into the water source.
- Start the compressor and slowly open the air connection valve. Do not permit the air pressure to drop below 40-50 psi or the air mass will not move the water properly. On the other hand, excessively high pressure can damage pipe and fittings. Most large irrigation systems are designed to operate at approximately 120 psi at the source and 80 psi at the heads. Some pipe and fitting manufacturers will not honor warranties if their products are damaged by improper winterization.
- Select one branch of irrigation piping and open a group of valves in series nearest the water supply. The concentrated high velocity of the air will blow most of the water out of the pipe within a few minutes. When air instead of water comes out of the heads, shut off the valve to those heads. Do not permit air to blow through the heads for more than a few seconds or damage may result.
- Automatic valves, whether electric or hydraulic, open quickly but close slowly. This shut-down time may range between five and 30 seconds. You want the next set of valves to open before the first set closes to prevent pressure from backing up in the system. You can instruct the controller to shut down the first set of valves and then open the next set of valves as long as you stay within the shut-down period.

Proceed from the source downstream until all of the valves have been opened, the sprinklers have discharged air, and you have reached the end of the pipe, or an emergency gate valve in the event of a loop pipe system. Operate the valves several times so air can replace the water in the operating parts of the valves.

By controlling the number of valves open, you control the pressure in the line. If the pressure drops below 40 psi, shut off several valves. Restart them when the air pressure has recovered.

It is desirable to have a drain or quick-coupling valve on both sides of an emergency shut-off valve if all of the water is to be removed from that line.
- Select the second branch of piping and repeat the previous step, from the source to the end. Continue the same process until all branches have been blown.
- At the low points in the piping, the air blow past the water, and the water has now returned to the low points by gravity. This is where the drain valves should be.

With the pipe under air pressure, crack the drain valve, until all air and no water

continued on page 22
November, 1988
Winterizing
continued from page 21
comes out of the valve. Close the drain valve and proceed to all drains on the property, following the same closing procedure with each.

The closed drains will prevent gravel from the drain wells, and surface water from rain or a thaw, from entering the system over the winter months. Spring turn-on is also expedited by not having to make the rounds to close each drain valve.

- Repeat the procedure from the fifth step ("Select one branch," etc.) on each branch to verify that all air and no water is discharged from the sprinklers.
- Drain all gate valves, pressure-reducing valves, check valves, backflow preventers, pump volutes, pressure gauges, and piping in the pumphouse.

In closing their list of procedural pointers, the Buckner people point out that gravity drainage of an irrigation system can also be very successful. Patience is necessary—as well as a good understanding of the pipe size, water volume, and infiltration rate. However, drainage with air is usually faster and more effective for the typical installation, they advise.

Cooper, product manager and technical services manager for Weather-matic, conducts many irrigation service seminars across the United States and in Canada. "Basically, when you talk about winterization, you have to talk in terms of specific areas of the country, as procedures vary according to climate," he points out.

Discussing winterization procedures in the first of four north-to-south climatic zones, Cooper says, "In the northern part of the country, basically on a line that goes from Colorado north and Montana east through Michigan and all the way to New York, systems are winterized to a point that they're completely evacuated of water."

He continues, "Blowing out, to use the trade term, is done with an air compressor that injects air into the system till the water is completely evacuated. It's a very simple process—if done properly. "If not done properly, a lot of damage can be incurred to the system," he warns, "particularly where rotary heads are used—and gear drives in particular. So let's talk for a moment about gear drives."

"The impetus for rotation comes from an impeller. Water flowing across the impeller causes it to turn. Through a gear reduction, the rotation speed of the impeller is reduced to about a two- to three-minute revolution at the nozzle. Depending on the manufacturer of the gear drive, the impeller speeds will generally be somewhere in the 1,000-rpm range."

However, he observes, if the impellers are turned on air rather than water, the rotation speed increases dramatically. The bearings that the impeller rides on are not designed for that type of operation. If the air movement is kept going through the heads for a prolonged period of time, damage can occur to the impeller bearings. A common terminology for this is "burning the bearings."

How long is too long? "The maximum cycle duration after the first head starts to blow air should be no more than 30 seconds to one minute," Cooper emphasizes. Therefore he recommends using short multiple cycles for blowing the system out. "One person should operate the controller while others observe what's going on at each head or drain valve. By using radios, the people in the field can let the person at the controller know when heads start to blow air." Another option would be to install remote-control devices to run the controllers from the field. Someone should also keep a constant watch on the air pressure.

By using multiple cycles, he explains, the impellers and impeller bearings are not stressed, as they would be with one continuous cycle of evacuation. In most small institutional systems, he advises, the system can be completely evacuated in about three cycles.

If manual drains are available, once the system has been evacuated they should be opened and left open. This procedure is recommended by Cooper for all types of irrigation equipment. Of course, these valves should be located in such a way that water does not collect at the valve opening entered in the pumphouse.

Why Do Contractors Who've Installed 400,000 Turf Irrigation Systems NEVER WORRY?

The KING DRAIN

Our drains are the world's number one selling turf irrigation drains. They provide complete freeze protection when used as the exclusive freeze protection method, and should also be used when the contractor intends to blow out the system because of their consistent reliability. The drains are designed for commercial or residential applications, on main or lateral lines.

Eliminate your worry over broken valves, sprinkler heads, and pipes due to early freezes! Maximize your productivity and your profits by spending more of your time installing systems! Choose the best-designed, most versatile, highest quality drain on the market.

For samples, specifications, and product availability, call or write King Technology.

Come visit us at the IA Show, Booth #111
Solve your litter collection problems, fast, economically.

The Trash-Pik™ is the new, innovative method for picking up litter at municipal locations, theme parks, airports, shopping malls, car parks and such places. It is fast, efficient, easy to operate, economical and simple to service and maintain. The body is made of corrosion free, heavy-duty fibre-glass and the mechanical components are designed for rugged day-in day-out reliability.

The Trash-Pik™ will eliminate high labour costs. With one man doing the work of several, you benefit with fast pay back, in only months!

Some outstanding features:
- 18 h.p. two cylinder Kohler gas engine
- Closed loop hydraulic hydrostatic drive
- 200 degree nozzle operating arc
- Reverse air-flow to remove hose blockages or blow leaves or litter for easy pick-up
- The 8 cu.ft. litter container with bag tilts back for easy unloading
- Automotive type steering and controls
- Heavy-duty, corrosion free fibre-glass body

Call your Brouwer dealer for more information or a demonstration...TODAY.
Winterizing

continued from page 22
and reenter the system.

Automatic drain valves can simplify matters. One example is the King Drain which closes when the pressure exceeds 10 psi. As long as the system is pressurized with water or air, the valve remains closed. It opens when the pressure drops below 10 psi to drain water that collects in low spots so freezing won’t damage the pipes. A filter and back-flow valve built into the drain prevent debris from entering the system. These valves allow for winter drainage and eliminate the process of opening and closing drain valves in the fall and spring.

Gard Craw, spokesman for Hunter Industries, a manufacturer of gear-drive heads, says that pressure should be watched at all times during blow-out. “Some people think that if they raise the pressure the job gets done faster,” says Craw. “All you need is about 40 psi and you shouldn’t go above that.”

“As we travel further south across the country,” Cooper continues, “winterization becomes simply a case of draining the mains and laterals through the use of drain valves.

“The one thing demanding particular attention in these instances would be any backflow-prevention device set above grade—above ground level,” Cooper advises. “Depending on the winter’s severity in your area, special attention will need to be paid to these units to make sure they are drained.

“As we progress further south, winterization may simply consist of assuring that the system does not operate during an extreme cold snap. Where system operation is allowed during the winter, one of the prime methods to prevent watering during such a cold snap would be the use of a freeze-stat. This item is simply a temperature gauge with a switch, or else a temperature-sensitive switch. It would preclude system operation once the temperature drops to 40 degrees or less.”

“These items can be purchased preset at a specific temperature, or they can be bought with the temperature as an adjustable feature.

“As we proceed south, basically to the Caribbean, the last temperature extreme that would require virtually no winterization,” Cooper continues. “In Florida they very seldom winterize. Even here, in certain parts of Texas, we seldom winterize. This is particularly true of south Texas.

“So basically there are four strata of winterization within the United States. Most of the winterization provisions are made at installation by the contractor. By this we mean that if you’re going to use air evacuation, an entryway into the system has to be ‘plumbed’ into that system during installation.

“Winterizing an irrigation system is concerned, is ‘What do we do with the controller?’

One thing is mandatory when installing automatic drains: They must be installed at the low point of the line being drained, to assure that complete drainage will occur. Automatic drains need good gravel sumps.

“Manual drains also need good gravel sumps—and access to manual drains needs to be built into the system at the time of installation, with attention being paid to grade changes,” says Cooper.

“One more place where caution needs to be used is this: When evacuating with air, do not over-pressure the irrigation system. Too often, during evacuation of the system, people pay more attention to speed than to the care of the system itself.”

When this happens, Cooper emphasizes, the problems that occur during turn-on or restart the following spring can be tremendous, due to damaged equipment—not only the irrigation equipment, such as sprinkler heads and valves, but damage to the piping itself.

“The reason I make this statement is that, unlike water, air is tremendously compressive,” he explains. “And, as a result, pressure surges two or three times that of the originating pressure can be built up in the system. In most cases, an irrigation system is designed to handle these pressures.”

Cooper adds, “One of the main concerns most service people have, as far as winterizing an irrigation system is concerned, is ‘What do we do with the controller?’

For more information Call or Write:
(800) 533-5167 (305) 734-2254
2840 NW 2nd Avenue • # 308 • Boca Raton, Florida 33431
Site of 1988 PGA Honda Classic.

For Details
"As a rule of thumb, it is best if the controller is kept operating. Irrigation controllers are designed to be operated 24 hours a day, 365 days a year. By operating the controllers, the operating components—gears, bushings, bearings, etc.—in electro-mechanical controllers are kept from obtaining a 'set.'

"In electronic controllers, the circuit components are kept active and fresh, and the surge protection is kept functional," says Cooper. "Additionally, the heat generated by the transformer helps to keep the condensation that would otherwise occur to a minimum.

"The main point to remember is that the valves must be precluded from operating. Most controllers have a switch that breaks the output voltage to the valves. It is not advisable to operate the solenoids on the valves dry—that is, with no water in the valve."

Some irrigation systems have moisture-sensing equipment installed above ground that is used to preclude automatic operation if enough rainfall occurs. "When winterizing," Cooper warns, "remember to protect these devices in addition to the remainder of the system. If these sensors have collected moisture and a freeze occurs, they are more than likely going to be damaged."

All the precautions that are vital to winterizing are just as important when a drained system is recharged. Water flows considerably faster in an empty pipe than in one full of water. You don't just turn on the pump and start opening valves. The system should be refilled slowly, in order to get all the air out of the lines first.

"When a pipe is full of water the design velocity should be four to five feet per second," explains Cooper. "In an empty pipe, water can reach a velocity of up to 13 feet per second. When the pipe becomes full and the water velocity is suddenly reduced to design velocity, a pressure surge of up to three to four times static pressure can be generated at the sprinkler head. Water hammer, caused when the velocity of the water is suddenly slowed, can burst heads, pipe, and fittings, causing severe damage to an irrigation system."

Cooper suggests turf managers with pump stations use just the jockey pump to charge the system—and keep as many valves open as possible. "It may take eight hours or more to charge a golf course irrigation system, but the worst possible thing you can do is rush it," he warns.

He strongly advises that large irrigation systems include sufficient filters to remove sand and debris. Such material can seriously harm components when the system is winterized. Whenever a pipe is repaired, the system should be flushed by removing downstream heads to remove any dirt, glue or debris that may have entered the system.

Cooper prefers to keep drain valves open during the winter, in order to allow moisture entering the system from melting snow and rain to drain out.

"It's not unusual for irrigation heads to be under water or hidden beneath snow during the winter," he remarks. "Some of that water is going to drain into the heads and down to the valves and pipe. While a portion of the water will evaporate, the rest needs someplace to go. Keeping the drain valves open, but protected, will get rid of the water."

Winterizing is something that turf managers should keep in mind throughout the year. There is more to irrigation maintenance than meets the eye, and it's what you don't see that can hurt you more than what you can see.

"This may require a little extra effort in the fall," Cooper admits, "but it's better than replacing damaged components in the spring."

Take the sweat out of trenching with Trenchmaster. Sturdy steel construction, but light enough for easy loading and operation by one man. Ease of cleanup, no compaction and no turf damage means fewer customer complaints. Trenchmasters trench up to 7" or 12" deep and from 10 to 30 feet per minute. Your choice of three makes of industrial engines. New rotors are available for trenching in hard clay and rocky soil.

Circle 122 on Postage Free Card
real star quality turf is often just a cut above an ordinary-looking turf—a cross-cut, that is. Nothing stands out more than a natural turf sports field or golf course than the beautiful striped or checkered pattern created by mowing. It takes both a quality mower and an experienced operator to give a sports field or fairway this professionally finished, "made-for-TV" look.

For stellar cutting quality, nothing beats a properly sharpened and adjusted reel mower. The shearing action of the reel blades against the bedknife gives a clean cut that heals quickly, is less susceptible to disease, and helps keep a fresh, green appearance. What's more, a reel can easily cut in the one-inch-height range without scalping, even if there are a few surface irregularities in the field.

In most cases, one triplex reel mower with 62-to 84-inch cutting width is adequate for cutting from one to several sports fields or an averagesize 18-hole golf course. One triplex can cut all the turf in a stadium in less than two hours. A smaller walk-behind reel mower is often used on major league baseball infields, making it easier to vary the cutting height.

The attractive striping appearance is achieved by the unidirectional cutting action of the reel, followed by the rolling action of the rear roller, which orients the grass in one direction to create a striping effect.

Football fields are the easiest to stripe, by reversing the direction of cut between succeeding five-yard markers. Most triplex mowers require three passes to cut each five-yard-wide section. A golf course takes more effort to stripe, but the stunning effect makes it worth while.

To get an attractive checkered pattern on a baseball field, a cross-cutting mowing pattern—with each pass of the mower coming back against the grain of the prior pass—is established parallel to one foul line. Next time the field is cut parallel to the other foul line, crossing the first day's pattern at a 90-degree angle. By maintaining the same direction of cut throughout the season, the checkered pattern becomes highly pronounced.

The secret to maintaining an even pattern across the field is to line up precisely with the foul line on the first pass. A parallel mowing pattern is established with this first mowing by maintaining a consistent amount of overlap on succeeding passes.

Midway through the first mowing, the operator will correct the pattern if necessary, by sighting down an imaginary line running through second base from either first or third base while mowing on from the outfield. Any irregularity in the pattern is caught and corrected at this point, and a renewed effort is made to maintain consistent overlap throughout the remainder of the cut.

Once the mowing pattern is established with the first two cuts, the operator simply "drives between the lines" on subsequent cuttings. Some turf managers will vary this pattern when the team is out of town to prevent excessive grain build-up that can allow long grass blades to lay down and escape being cut.

The ideal mower for striping should have several features for optimal performance in cutting fields or golf courses. Out-front reels help ensure a quality look by cutting grass before it is flattened down by the mower's wheels. Catchers are needed to collect clipings during fast grass-growth periods.

Large turf tires distribute the mower's weight evenly and keep ground pressure low to avoid compaction. "Floating" reels—where the cutting unit is supported by front and rear rollers and allowed to conform to ground contours—are also important. These mowers cut smoothly over surface variations. On baseball turf, the cut is often in the one-inch range without scalping the turf.

For accurate striping, the outside reels of the mower should be positioned in front of the operator. This makes it easier to maintain a consistent overlap on each succeeding pass, since the operator can focus on the mowing path ahead without looking off to the side or rear. Out-front reels, along with a relatively low seat, help the operator line up distant objects with the outside reel to maintain a straight-line cut.

A skillful operator on an efficient machine makes striping look easy. But on each cross-cutting turn, the operator must steer, adjust traction speed, and raise and lower the reels—all within the space of a couple of seconds. Today's state-of-the-art triplex mowers make all of this possible, while at the same time providing the smooth, uniform, precision-quality cut that quality sports turf and fairways demand.

Hydraulic reel-lift allows straight-line striping all the way from the infield to the warning track on a baseball field. The cross-cutting turn is made on the dirt, eliminating any potential turf marking from quick, sharp turns. In order to use both hands for steering, a foot-controlled hydraulic reel-lift is especially helpful.

Powered reels can be damaged from overheating if grass is not passing between the blades and bedknife, acting as a lubricant. To avoid damage, reels should shut off automatically when raised and start up again when lowered to resume cutting.

Mowers without convenient reel-lift and automatic off/on systems must stay on the grass during turns to avoid overheating damage. This eliminates the straight-edge striping pattern at turf edges, and requires the operator to slow down on turns to avoid turf damage.

With healthy grass, a skillful operator, and an efficient triplex reel mower, any sports field or golf course can be given the "ready for prime time" look so familiar to all TV sports viewers. The striking, aesthetically pleasing pattern assures everyone—from spectators, players, and club members to team owners, superintendents, and school board members—that this is professionally maintained turf.
SYMPOSIUM TO FOCUS ON SPORTS TURF SAFETY

The American Society for Testing and Materials (ASTM) will take the first step to clear up the controversy regarding safety of playing surfaces during a one-day symposium in Phoenix, AZ on December 6. ASTM's Committee on Sports Equipment and Facilities has invited experts on both natural and artificial turf to present their data on injuries and to make suggestions on how to improve field safety.

Among the speakers will be representatives of the NCAA and NFL, reporting on injury statistics. In addition to speakers from the U.S., seminar attendees will hear reports from Canada and England. There will be a total of 25 papers presented during the meeting.

The seminar is the first event at which manufacturers, builders and maintenance specialists for both artificial and natural turf have gotten together with those who keep track of injuries to hash out differences and to improve standards. It is likely that the record of the meeting will become a basis to judge the safety of playing surfaces in the future.

GOLFTURF HIRES VALHALLA'S SCOTT

Golf Turf, Inc., the agronomic branch of Jack Nicklaus Golf Services, has hired Jonathon Scott, superintendent of Valhalla Golf Club in Eastwood, KY, as an agronomic specialist for cool-season turf. Scott takes over for Allan McCurrach, who left Golf Turf to be chief agronomist for the PGA Tour.

Scott will consult 35 courses subscribing to Golf Turf's agronomic services, including two courses he has served as superintendent: Valhalla and Grand Traverse Resort. McCurrach worked closely with Scott at both courses.

Scott and Valhalla were the subjects of the cover feature in the September issue of sportsTURF.

HILTON HEAD DEVELOPER PREVIEWS FERTILIZER

Bob Onorato, a developer based on Hilton Head Island, SC, has been surrounded there by golf turf for much of his career. Recently he decided to get involved by developing an organic fertilizer for greens, tees, and fairways. Superintendents were given a preview of the fertilizer, called Bio-Turf, in October.

The fertilizer has been tested by Dr. Keith Karnok of the University of Georgia. During the preview, Karnok described the technical and chemical characteristics to more than 35 superintendents representing major golf course projects from Savannah to Hilton Head.

The all-natural fertilizer contains no urea. It is non-toxic, non-burning and non-polluting. Karnok, as technical advisor to the company, described the growing importance of natural turf-care products to the superintendents.

Bio-Turf is available on a national basis from the company of the same name on Hilton Head Island.

MARKETING EVENTS FOCUS OF 10TH SUMMIT

Producers and sponsors of major sport events will gather in New York City, November 28-29, to discuss future marketing opportunities during the Tenth International Sport Summit. This is the sixth time the event has been held in the city, headquarters for most of the major television networks.

The Summit was created in 1977 to provide a forum for major sports organizations, facility managers, the media and event sponsors.

Included among the speakers during the Summit are Josep Miquel Abad, chief executive of the Organizing Committee for the 1992 Olympics in Barcelona, Spain; William Wardell, senior vice president of the 1988 Winter Olympic Games in Calgary, Canada; and Harry Usher, former executive vice president of the Los Angeles Olympics.
GRANULAR APPLICATORS

For broadcasting fertilizer or granular chemicals, or for overseeding ryegrass and other seeds, two trailer models of Orbit-Air applicators have been introduced by Gandy Company.

The Model 6210 has a capacity of 600 pounds of fertilizer, 450 pounds of dry chemical, or eight bushels of seed. The air system is powered by a gas-engine blower. Material metered from individual outlets is carried to deflectors positioned across a 20-foot folding boom to "spray" the dry material downward under pressure.

Two electric clutches allow shutoff of either boom half for spot application or treatment of narrower turf areas. Individual outlets can also be closed. The breakaway boom is height-adjustable from 18 to 26 inches.

Application rates are set by the operator on an infinite-speed control unit which adjusts the rpm of the metering wheels in ratio to the ground speed. As the travel speed increases or decreases, the control unit maintains the same ratio to apply a constant application rate.

Three choices of metering wheels are available for application of chemical, fertilizer or seed. The model is also offered as a skid-mount for installation on utility vehicles, or as a three-point hitch mount.

YARDAGE MARKERS

Yardage is a critical part of any serious golfer’s game. It helps in selecting the right club and gauging the strength of his or her swing. When you have to guess that a particular tree or stake is the 150-yard marker, the game becomes more luck than a sport.

Golf 2000 Corp. has devised a way to clearly mark yardage with a mat flush with the turf surface. The five-inch-high yardage figure is embedded in a one-square-foot plastic paver. Turf grows through the open cells, while yardage is displayed clearly in the center. The markers are made of high-density polyethylene, which is ultraviolet-stabilized and color-fast.

Balls hitting the markers bounce straight, so they can be placed within the fairway at intervals from 250 to 60 yards from the green. The markers are legal under USGA Rule 24-2.

FINETEXTURED PERENNIAL RYEGRASS

Northrup King Company has announced the release of Caddie fine-textured perennial ryegrass. The fine-bladed, medium-dark-green variety exhibits excellent seedling vigor, superior tillering capability and uniform density.

Caddie was developed from germplasm collected from rust trials. It demonstrates excellent resistance to many common turfgrass diseases, such as crown rust, leaf spot and dollar spot.

48-INCH AERATOR

Designed for use with small utility tractors, the Ryan 48-inch three-point hitch Lawnaire Aerator is ideally suited for athletic fields and school grounds.

POP-UP SPRINKLERS

Designed to resist breakage from lawn mowers or heavy traffic, the 600 Series spray pop-up sprinklers from Buckner are ideal for commercial and industrial applications.

Made to control the amount of water applied, the sprinklers feature brass, wear-resistant nozzles disguised to look like plastic to discourage vandalism.

Other features include a pop-up mechanism constructed of a sand-proof material to increase life and reduce hang-up; a debris plug that keeps foreign matter out of the sprinkler prior to flushing and installation of the nozzle; a ratchet mechanism for arc adjustment without loosening the body connection; and a check valve to reduce drainage in variant elevations.