tion, wind speed and evaporation rates to estimate how soil moisture levels are changing. Once fed into computerized irrigation controllers, these formulas adjust the amount of water applied.

One such system was established by Dr. Richard Snyder at the University of California, Davis. Called the California Irrigation Management System (CIMS), the project is now run by the state Department of Water Resources. Snyder always stresses that the estimated evapotranspiration (ET) rates generated by the CIMS need to be periodically adjusted and corrected based upon actual field measurements of soil moisture.

Pogue and others feel that moisture sensing devices are a more direct method of shutting down irrigation when plants have all the water they need. They feel these devices placed in the rootzone of key plants are bound to be more accurate than even highly sophisticated formulas designed to estimate what soil conditions are. They don't use the same methods to measure soil moisture levels, but they are all convinced these devices can detect a plant's water needs at any moment and can relay this message to a central location for adjustment of irrigation cycles.

Soil and plant scientists have been experimenting with soil moisture sensing devices for more than 60 years. Researchers at Cornell University and Iowa State University discovered that an enclosed tube of water with a porous ceramic tip on the bottom responded to different soil moisture levels like they theorized a plant's roots did. They knew that plant roots had to pull water away from soil particles. As the soil got drier, the roots had to pull harder to overcome the grip of the soil particles on the water.

When they added a vacuum gauge to measure the suction inside the tube, the researchers could assign a number to the wetness or dryness of the soil. The drier the soil was, the higher the gauge read. Since this was a measure of the tension of the water in the soil, they called the device a tensiometer.

Irrigation manager sets the switches on the moisture sensing devices for the desired moisture levels.

Scientists in soil and plant laboratories were the first to use it. "With the tensiometer," Pogue points out, "researchers could compare plant performance under varying conditions knowing that soil moisture conditions were exactly the same for all plants being studied. In other words, they could eliminate water as a variable in their research."

It wasn't until 1951, when Irrometer began commercial production, that tensiometers became available to the landscape and agriculture industries. Citrus growers were the first to use them to a significant degree. Early tensiometers had to be checked individually by the irrigation manager before he would adjust the amount of water applied manually. If they were left unattended during extended dry periods, they could run dry. The water in the tensiometers had to be checked regularly.

Irrometer's tensiometer has been commercially available for more than 30 years, but its appeal is starting to broaden with rising water bills and a growing awareness of the problems caused by overwatering or underwatering turf and ornamentals. Irrometer has added a data collection unit to its tensiometer, making it more useful to turf and landscape managers.

Water Conservation Systems, Inc., makes a solid-state tensiometer called a Hydrovisor. Like Irrometer's tensiometer, it measures the suction required to remove water from the grip of soil particles. WCS president Ed Bramlett says it's this force that matters, not the percentage of moisture in the soil. Rather than measuring the suction through a porous ceramic tip, the Hydrovisor uses soil temperature information to calculate the availability of water in the soil.

The Hydroturf System from Hydroyne measures the amount of free water between soil particles in the rootzone. Griswold Controls' Scanex also measures soil moisture content. All companies have reported water savings of 50 percent in systems where their devices have been used.

When electromechanical controllers were developed in the late '50s and early '60s, they opened new doors for moisture sensors. Electric valves in the field, linked to the controller with wires, would open and close according to instructions at times set on the controller clock. No longer did the landscape manager have to manually open valves located in many different locations and then wait or return to shut them off again. The electromechanical controller was quickly accepted as a big labor saver for the landscape industry.

Sensing a great opportunity, in 1961 the engineers at Irrometer linked a switching unit to its tensiometer. When the tensiometer detected a preset level of moisture in the soil, the switching unit would break the circuit between the valve and the controller shutting the water off. As the soil became drier and fell below another preset moisture level, the switching unit would reconnect the circuit and the signal from the controller to irrigate would again activate the valve.

"The manager could set the controllers in the field to cycle more frequently and the tensiometers would stop any cycle after soil moisture levels were adequate," said Pogue. This eliminated the need for the irrigation manager to read the tensiometers before adjusting the irrigation cycles. Still, the units would run dry if left unchecked during dry periods, says Pogue. Part of the problem was irrigation managers didn't understand how these moisture sensors worked, so the company began to hold water management seminars.

The advent of solid state controllers and, most recently, computerized centralized controllers, greatly expanded the number of stations a central controller could operate. Today, satellite controllers in various locations in the field can both receive instructions from a centralized computer as well as send appropriate information back. Now, a person sitting at a computer in an office can know what heads out of thousands in a system are operating and at what pressure. He can see by feedback from gauges in the field if there are leaks, malfunctioning valves or...
Taking the Guesswork
continued from page 31
heads and if certain zones have all the water
they need.

Soon, software for these computers will be
able to take the feedback from the field and
make adjustments to irrigation cycles
automatically. In addition, satellite controllers
in the field will be able to communicate with
a central computer by radio or telephone
lines. With so much new information and
technology, it is easy to see a need for irri-
gation managers who understand these
complex systems and can get the most out
of them.

Moisture sensor manufacturers are tak-
ing advantage of this new capability. Utilizing
computer software and two-way communi-
cation between field controllers and a central
computer, Irrometer has solved two of its
problems with tensiometers. Now, actual
soil moisture readings from many tensiome-
ters in the field can be seen on a control
panel sitting next to the central computer.
Without going into the field to check individu-
al moisture sensors, the irrigation manager
can adjust cycles without leaving his desk.
It also allows him to carefully track his soil
moisture trends and to spot problem areas
long before they become serious.

The feedback capability also alerts a cen-
tral computer when tensiometers have
broken suction and are malfunctioning. "This
eliminates the maintenance problem as-
sociated with tensiometers," says Pogue.
"By using feedback from moisture sensors
in the field, the long, dry periods that cause
the units to break suction are eliminated.
But, if they do malfunction, the irrigation
manager will know right away without having
to go into the field to find out."

The first major installation of a system
combining tensiometers with a Motorola cen-
tralized computer is planned for the Sepulve-
da Basin Golf and Recreation Project in Los
Angeles. Dave Megeath, the project
manager for Motorola, says, "The whole key
at this point is the software. Our software
was compatible with Irrometer's so we didn't
have to wait to develop programs to link the
tensiometers with our MIR-3500 System."
The Sepulveda Basin complex includes
two golf courses and a driving range, plus
general landscaping. With long range plans
to utilize reclaimed water, the moisture sen-
sors will ensure that control is maintained
over the potential deep percolation of low
quality water into the ground water supply.

"The park also wanted control of the ir-
gration system to be in one person's hands,"
Megeath adds. "Since there is such a var-
iety of sites within the park, moisture sen-
sors seemed like a good way to customize
water needs for these areas. The two-way
communication between the MIR-3500 and
the tensiometers clinched the sale. The
results in water and labor savings will be
very interesting to see."

As manufacturers of other centralized
computer irrigation systems develop the soft-
ware to incorporate the tensiometers, their
new capabilities can be realized in more sys-
tems. In the meantime, tensiometer systems
can be installed in key problem areas for
connection with computers at a future date.
Pogue recommends two probes per site,
one at a shallow depth and another at 3/4
of the depth of the root system. This will
permit better control over deep penetration
of water in various soil types.

A number of probes can be connected to
a single switching unit. The switching units,
when hooked to controllers set to cycle fre-
cently, will maintain appropriate soil
moisture levels and prevent the tensiome-
ters from breaking suction. When the
manager of a large irrigation system adds
a centralized computer controller, or when
the company who made an existing com-
puter controller develops the necessary soft-
ware, the tensiometers can be incorporat-
ed into an overall water management
program.

Significant water and labor savings have
been realized already by incorporating
moisture sensing devices into large irriga-
tion systems. As the value of water contin-
tes to rise and computer technology helps im-
prove the reliability and accuracy of moisture
sensors, they will become as important a
part of an irrigation system as a source of
water, satellite controller or valve.

Meet the "First Family" of
HAMMER ARRESTORS...

... for fast, easy installation.
(1/8" through 4" sizes)

Yes, we now offer you a 11-
member family of FLUID (Water)
Hammer Arrestors ...
Plus ... a 12th member com-
plete with pressure gauge for
petroleum or volatile fluid piping
problems.

Smallest in our "family portrait"
here is our 1/8" & 1/4" size engi-
neered for vending machines
and domestic dish washers.

Other sizes range from 1/2"
through 4" by pipe size ... all care-
fully designed and engineered to
give you maximum number of fix-

PRECISION PLUMBING PRODUCTS, inc.
Airport Business Center • 7021 N.E. 79th Court
Portland, Oregon 97218 • (503) 256-4010 or 4011
Telex: 151055

Pride

Specify With Confidence — Install With Pride

Circle 143 on Reader Service Card
CHALKBOARD
TIPS FROM THE PROS

Summer Disease Recovery
By Eilott Roberts

Most turf diseases are far less active in the cooler weather of fall than during the middle of summer. This is a good time to help turf recover from any problems caused by disease in the spring or summer. Since many diseases are most active when the turf is under stress, the fall is a good time to help recover the turf. The reason is that the grass is less active, so the disease organisms are not spreading as quickly.

Lucas believes the poor surface drainage also robs fungicides of their effectiveness since conditions hamper the distribution of the chemicals in the rootzone. Pythium species were found on the roots of healthy bentgrass on trouble-free greens, so the weakened state of bentgrass roots caused by the subsurface layer reduces the bentgrass plant's resistance to the disease.

Poor drainage appears to trap fertilizer salts near the soil surface. High levels of soluble salts probably killed some of the short roots, Lucas theorizes, and encouraged top growth over root growth. Low potassium levels were also discovered in problem greens. Since this nutrient is important for root growth and stress tolerance, a deficiency may have hindered root development.

Roots of bentgrass weakened by pythium were very short in late summer and fall and remained shallow into the winter. Bentgrass root growth remained slow due to high soil temperatures throughout the summer. Lucas states, "A combination of factors contributed to the pythium root rot problem. Pythium was the straw that broke the camel's back. I don't anticipate the disease will be severe unless soil drainage exists, too much water is applied, or improper fertilization practices are used."

Warm summer weather and poor drainage have combined to make this disease a great concern to many superintendents, says Lucas. Poor drainage and summer irrigation practices are robbing the bentgrass roots of valuable oxygen at a time when the roots need to be their healthiest.

Lucas blames a compacted layer of soil just two to three inches below the surface. Roots find it difficult to penetrate this layer and water will not percolate through it to drainage systems below. Surprisingly, this layer is often linked to compaction caused by the tips of aerifier tines. Aerifying at the same depth every time packs the soil at the bottom of aerifier holes. As a result, root growth is hampered and damp conditions persist at the surface.

Lucas believes the poor surface drainage also robs fungicides of their effectiveness since conditions hamper the distribution of the chemicals in the rootzone. Pythium species were found on the roots of healthy bentgrass on trouble-free greens, so the weakened state of bentgrass roots caused by the subsurface layer reduces the bentgrass plant's resistance to the disease.

Poor drainage appears to trap fertilizer salts near the soil surface. High levels of soluble salts probably killed some of the short roots, Lucas theorizes, and encouraged top growth over root growth. Low potassium levels were also discovered in problem greens. Since this nutrient is important for root growth and stress tolerance, a deficiency may have hindered root development.

Roots of bentgrass weakened by pythium were very short in late summer and fall and remained shallow into the winter. Bentgrass root growth remained slow due to high soil temperatures throughout the summer. Lucas states, "A combination of factors contributed to the pythium root rot problem. Pythium was the straw that broke the camel's back. I don't anticipate the disease will be severe unless soil drainage exists, too much water is applied, or improper fertilization practices are used."

Warm summer weather and poor drainage have combined to make this disease a great concern to many superintendents, says Lucas. Poor drainage and summer irrigation practices are robbing the bentgrass roots of valuable oxygen at a time when the roots need to be their healthiest.

Lucas blames a compacted layer of soil just two to three inches below the surface. Roots find it difficult to penetrate this layer and water will not percolate through it to drainage systems below. Surprisingly, this layer is often linked to compaction caused by the tips of aerifier tines. Aerifying at the same depth every time packs the soil at the bottom of aerifier holes. As a result, root growth is hampered and damp conditions persist at the surface.

Lucas believes the poor surface drainage also robs fungicides of their effectiveness since conditions hamper the distribution of the chemicals in the rootzone. Pythium species were found on the roots of healthy bentgrass on trouble-free greens, so the weakened state of bentgrass roots caused by the subsurface layer reduces the bentgrass plant's resistance to the disease.

Poor drainage appears to trap fertilizer salts near the soil surface. High levels of soluble salts probably killed some of the short roots, Lucas theorizes, and encouraged top growth over root growth. Low potassium levels were also discovered in problem greens. Since this nutrient is important for root growth and stress tolerance, a deficiency may have hindered root development.

Roots of bentgrass weakened by pythium were very short in late summer and fall and remained shallow into the winter. Bentgrass root growth remained slow due to high soil temperatures throughout the summer. Lucas states, "A combination of factors contributed to the pythium root rot problem. Pythium was the straw that broke the camel's back. I don't anticipate the disease will be severe unless soil drainage exists, too much water is applied, or improper fertilization practices are used."

Spring Transition Tips

Many sports turf managers begin to worry in the spring when the overseeded perennial ryegrass seems to keep the bermudagrass from coming out of dormancy. As the spring season starts, these managers tend to worry about the mixed stand of turfgrasses on their fields.

According to Dr. James Beard, their concern is often justified. Research at Texas A&M University has established two important facts about spring transition. First, bermudagrass has very poor shade tolerance. Ryegrass can actually shade out the bermudagrass if allowed to grow tall. To counteract this, Beard recommends relatively close mowing (3/16 inch) and modest weekly vertical cutting to open up the turf and let the sun and warmth reach the bermuda.

Secondly, Beard warns that holding back water in the spring to discourage the ryegrass can also harm the bermudagrass. The reason is that bermudagrass experiences root decline in the spring. The weakened root system is less capable of extracting limited moisture from the soil. To overcome this weakened state, maintain irrigation and fertilize with one pound of nitrogen per 1,000 sq. ft. per WEEK. If you have a tip you would like to pass along to other sports turf managers, please send it to sportsTURF magazine, P.O. Box 156, Encino, CA 91426. Photos are encouraged to help illustrate your tip. September 1986 33

Management Practices Cited For Increase in Pythium

Pythium is back in force in most areas of the country this year. Leon Lucas, turfgrass pathologist at North Carolina State University, thinks the problem is caused in part by common management practices. Warm summer weather and poor drainage have combined to make this disease a great concern to many superintendents, says Lucas. Poor drainage and summer irrigation practices are robbing the bentgrass roots of valuable oxygen at a time when the roots need to be their healthiest.

Lucas blames a compacted layer of soil just two to three inches below the surface. Roots find it difficult to penetrate this layer and water will not percolate through it to drainage systems below. Surprisingly, this layer is often linked to compaction caused by the tips of aerifier tines. Aerifying at the same depth every time packs the soil at the bottom of aerifier holes. As a result, root growth is hampered and damp conditions persist at the surface.
CHINA SIGNS AGREEMENT WITH INTERNATIONAL SEEDS

An Oregon turf seed producer has entered the drive to raise the standard of living in China. International Seeds, Inc. (ISI) of Halsey, OR, has signed an agreement to supply improved varieties of forage grass seed to the Chinese so they can develop millions of unused acres into productive pasture for beef and dairy cattle.

Harry Stafford will manage the two-year project for ISI and will work with Chinese scientists in pasture land development. The objective of the project, says ISI President J.L. Carnes, is to determine which grass seed varieties pose the greatest potential for turning these lands into productive pastures. The first seeds will go to China this fall.

LEBANON EXPANDS LIQUID FERTILIZER LINE

Lebanon Chemical Corp., a custom blender and manufacturer of fertilizers in Pennsylvania, has greatly expanded its liquid fertilizer business with the purchase of Tidewater Agricorp, Inc., of Chesapeake, VA. Tidewater's product line and 20 fertilizer outlets from Virginia to North Carolina will be operated by Lebanon's Total Turf Care Division, which handles sales to the professional golf and lawn care industries.

Mark Nazum, who was manager of Tidewater's Commercial Division, has been promoted to Manager/Agronomist of the liquid turf fertilizer line. Before his association with Tidewater, Nazum was manager of technical services for Rollins Care, a division of Rollins, Inc., Atlanta, GA.

Paul Mengle, Lebanon manager of marketing and sales, will be responsible for marketing the expanded line of liquid turf fertilizers.

WARREN'S APPOINTS TEEPLE NATIONAL SALES MANAGER

Warren's, headquartered in Crystal Lake, IL, has announced the recent appointment of Steve Teeple as national sales manager. Teeple is a relatively newcomer to the turfgrass business. His background is primarily in the materials-handling industry, where he has had extensive sales and sales-management experience. He will work at the corporate headquarters.

Mike Holmes, general manager of Warren's, commented, "This move is aimed at strengthening Warren's marketing effort as we grow in our current operations as well as expand into new markets."

He noted, "Steve has a strong sales and sales-management background. He should bring some fresh marketing perspective to our company as well as our industry."

Warren's is one of the nation's oldest sod-producing companies. It also produces and markets proprietary turfgrass seed and markets a specialty fertilizer line and a specialized lawn spreader. It is a national distributor for Warren's TerraBond, a geotextile or filter fabric.

TERRA - THE VERSATILE ONE

LOW MAINTENANCE

• Stadiums • Polo Fields • Fairways
• Soccer Fields • Parks • Tees
• Baseball Fields • Greens • Lawns
• Playgrounds • Fringes

ANY TURF AREA - LARGE OR SMALL

CONTACT YOUR TERRA DISTRIBUTOR OR:

Terracare Products Co., Inc.
P.O. BOX 506, PARDEEVILLE, WI 53954
(608) 429-3402

Players Ask For Natural Turf

Give them...

PRESCRIPTION

ATHLETIC TURF SYSTEM

PATENTED
• Suction Pumping
• Moisture Sensing
• Automatic Subirrigation

PRACTICAL
• Flat Surface
• The BEST in Water Management
• Never Muddy
• Tolerates Frequent Use

PROVEN
• In pro, university, high school fields.

FOR FOOTBALL, BASEBALL, SOCCER, INTRAMURALS

Plan for the BEST

Including a 2-year Advisory Service

Write for literature & list of licensees:

Turfgrass Services Inc.
643 N. Sharon Chapel W. Lafayette, IN 47906
317-743-9477
W.H. Daniel

Circle 112 on Reader Service Card

34 sportsTURF

Circle 113 on Reader Service Card
"Soluble Nutriculture™ has all the nutrients needed for healthier turf."

Maintaining a golfers' paradise in the California desert takes lots of work and water. But with Nutriculture 100 percent soluble fertilizers, Tom and Mike Caranci have lush green turf year round with less labor and expense.

Tom Caranci, who has developed and supervised more than 35 courses, uses Nutriculture to keep greens and fairways in peak condition and more stress-resistant. Because soluble Nutriculture contains chelated trace elements and is applied as a liquid, roots and foliage immediately absorb a total nutrient feed that shows results within days.

Mike Caranci turned to Nutriculture to correct a dangerously low level of minor trace elements. "I wanted a fertilizer with specific, measurable amounts of chelated trace elements. Nutriculture has a guaranteed analysis printed on the bag."

In any climate, Nutriculture offers the control of spoon-feeding for even, healthy growth without the fear of burning. And, for easy tank mixing, Nutriculture is compatible with most herbicides and pesticides.

Make Nutriculture soluble fertilizers part of your regular turf care program. For a FREE brochure, write Plant Marvel Laboratories, 371 East 16th Street, Chicago Heights, IL 60411 Telephone: 312-757-7500.
NOR-AM's TURF PRODUCTS DON'T SIMPLY NOURISH YOUR TURF... THEY PROTECT IT

Now achieve fine turf with fewer problems... thanks to NOR-AM's Total Turf Management Program. This unique program brings you a broad selection of high-performance products that assure healthier turf with better root development, fewer insect problems and less disease destruction.

As a service to the industry, NOR-AM has developed a Total Turf Management Program. This program includes a turf management calendar guide, brochures on turf diseases, insect control and fertilization techniques, in addition to timely turf management reports. To enroll in this helpful program, fill out the coupon below or contact your local NOR-AM sales representative.

MAIL COUPON TO:
NOR-AM Chemical Company
3509 Silverside Road
P.O. Box 7495
Wilmington, DE 19803
Attn: Communications Dept.

YES, I would like to be enrolled in NOR-AM’s Total Turf Management Program. Please send me further information.

Company __________________________
Name __________________________
Title __________________________
Address __________________________
City ____________________________ State ______ Zip ______
Nitroform®
Slow predictable release by soil bacteria provides constant 38% nitrogen when most needed for even, sustained growth. Nitroform reduces the risk of nitrate contamination, decreases thatch build-up, is nonburning and nonstreaking, resists leaching even in sandy soil, and assures better root development.

Turcam®
An advanced broad-spectrum carbamate insecticide that controls white grubs, chinch bugs, sod webworms, mole crickets and many other turf and ornamental pests. Turcam is odorless, works well in spray equipment, won’t tie up in thatch, won’t damage turf or ornamentals, and should be your product of choice when long residual control is required.

Proxol®
Economical Proxol 80SP Insecticide works fast on surface-feeding sod webworms, armyworms and cutworms, and readily penetrates thatch to control grubs. Proxol is easy to apply as a spray, has no unpleasant odor, and no long-term residual build-up in the soil.

Prograss®
A selective herbicide that effectively controls annual bluegrass, crabgrass and other troublesome weed species.

Acti-dione®
Broad-spectrum family of turf fungicides that provide four-season disease control. Acti-dione has proven to be effective without creating resistance problems. Acti-dione TGF® can be tank-mixed with Bayleton® or Daconil® to complement or improve disease control with significant cost-per-acre savings.

Banol®
Specialized fungicide that controls pythium and phytophthora in turf and ornamental plants. Preventative control with Banol stops the spread of pythium by mowers, foot traffic and surface water; it also means fewer applications, lower rates and savings in labor, fuel and equipment.

NOR-AM CHEMICAL COMPANY
3509 Silverside Road, P.O. Box 7495
Wilmington, DE 19803

Total Turf Care from the Turf Managers

IMPORTANT: Please remember always to read and follow carefully all label directions when applying any chemical.
MULTI-PATTERN AERATOR

Hole spacing and depth are adjustable on the Multi-Core aerator by S.J. Banks & Son. Three tine heads, one slicer head and one spiker head can be interchanged to obtain the particular type of cultivation needed for all types of greens.

Each Multi-Core head contains from nine to 18 tines, from 3/16 to 5/8-inch. The machine can remove up to one cubic yard of thatch per 1,000 sq. ft. or none at all with the spiker head.

The standard 16-inch-wide model can aerate 4,500 sq. ft. per hour. A wider swath model and both steering and non-steering units are available. All are powered by either a seven or eight hp four-cycle engine. The Multi-Core is easily towed by a utility vehicle when not in use.

S.J. BANKS & SON
Circle 138 on Reader Service Card

SPRAY INDICATOR

Signal is a highly visible, temporary blue colorant designed to be added to liquid spray solution. It provides visual evidence of where a spray application has been made which helps to eliminate skipping and overapplication.

The concentrated colorant is water soluble and compatible with landscape chemicals.

Signal will point out undesirable spray drift, clogged nozzles and improperly cleaned and rinsed sprayers. The colorant dissipates with rain or irrigation.

PRECISION LABORATORIES, INC.
Circle 137 on Reader Service Card

IS YOUR FIELD A "WINNER"?

NEWSTRIPE can supply the products to make your sports surfaces the most attractive in your conference. Our line markers and stencils are being used by major universities, school districts and soccer clubs for field maintenance.

Check these possibilities:

- Football
- Basketball
- Soccer
- Playgrounds
- LaCrosse
- Shuffleboard
- Baseball

NEWSTRIPE Inc.

P.O. Box 440881
Aurora, CO 80044

CALL
1-800-624-6706
For Details

Olathe SCARIFIERS

ATHLETIC FIELD CONDITIONER

Breaks up the crust then drags the dirt smooth – REDUCES PLAYER INJURIES!

SELF CONTAINED UNIT: Scarifier & Sprayer mounted on the Olathe Turf truck. A complete ATHLETIC FIELD MACHINE!

OLATHE MANUFACTURING, INC.
800-255-6438

100 INDUSTRIAL PARKWAY, INDUSTRIAL AIRPORT, KS 66031
913-782-4396

CALL
1-800-624-6706
For Details
Symphony is a fine blend of fine-leaf perennial ryegrasses especially suited to your particular overseeding requirements. Throughout the South and Southwest, Symphony has proven itself to be truly an outstanding overseeding blend with excellent wear characteristics and good insect resistance.

For golf courses, country clubs, parks, office complexes, and even homes, Symphony simply can't be beat!

OTHER FEATURES OF SYMPHONY INCLUDE:
- **ESPECIALLY BLENDED** to meet local growing requirements. Features fine blend of fine-leaf perennial ryegrasses such as Pennant, Bell, Pennfine, Derby, Prelude, Manhatten II and Palmer.
- Maintains an attractive green playing surface throughout the winter.
- Smooth unnoticeable transition (Bermuda to Ryegrass and Ryegrass back to Bermuda).
- Establishes quickly.
- Camouflages unsightly foreign Bermudagrasses where they do not go completely dormant.
- Provides excellent choice for wear tolerance, (especially golf courses).
- Best selection for fast ball roll surface.
- Has greater shade tolerance than Bermudagrass, (results in an even overall playing surface with shady areas.)
- Features very good insect resistance as a result of high Endophyte levels.
- Apron treating available.

E.F. Burlingham & Sons.
P.O. Box 217 • Forest Grove, OR 97116
(503) 357-2141 • Telex: 36-0274
Cable: Burlingham

Circle 129 on Reader Service Card