Getting ready for winter

Editor’s note: The air will be crisp for a lot of the country by the time you read this, a sure sign cold and snow and ice are around the corner. Here we present information to help you get ready for it.

IRRIGATION SYSTEMS

Winterizing your irrigation system properly is the one of the biggest factors affecting sprinkler system longevity. This article will provide a general overview of winterization including procedures and equipment needed to properly winterize an irrigation system, helping to prolong the life and integrity of the irrigation system.

Winterizing consists of using compressed air to force water out of the irrigation system before it can freeze and cause damage. Because water expands as it freezes, water left in the irrigation system may damage sprinklers and other components when it freezes. Piping, fittings, valves, and control valves may need to be repaired or replaced in the spring if the irrigation system is not properly winterized. Winterization should be done after 1-2 frosts, which usually is about the time when you have mowed the turf for the last time of the season. Even when air temperatures fall below freezing for a couple of hours the soil temperatures are still warm enough to keep irrigation system components from freezing.

As far as equipment is concerned, having a correctly sized air compressor is the most important component. Correct air volume and pressure settings are the key to properly winterizing an irrigation system. Air volume is a key component because the compressed air is used to fill the pipes and force the water out of the system. For example, a small compressor used to inflate tires will have more than enough pressure, but not enough volume to fill the pipes with air. The volume of air needed depends on the size and length of pipe and number of sprinklers. Generally a 90-135CFM (Cubic Feet per Minute) compressor will do a satisfactory job on most sports fields. For golf courses or large sports field complexes a compressor of 185 CFM-750 CFM are required.

Although the volume of compressed air is a driving factor for a good winterization to be performed, don’t overlook the importance of air pressure. Most sports fields can be winterized using 40 psi-60 psi of air pressure. It is important to know that air is more easily compressed than water. With this in mind, it is best to use an external pressure regulator on the air compressor. This regulator is simply a pressure gauge.
and ball valve used to regulate the air pressure going through the lines. These units can be made pretty easily, or rented at most tool rental agencies for $8-$10 per day. It is easier to monitor and adjust the pressure output from an external regulator, but if you choose not to use one then you must adjust the pressure internally on the compressor. There is usually a pressure gauge and set screw on the compressor under the hood.

PROCEDURES

Procedures for properly winterizing an irrigation system are easy to follow, and some of these steps may not even be necessary with all systems. The first step in winterizing an irrigation system is to shut off the water supply. There should be a valve between the main water supply and the backflow preventer. Close this valve and then close the valve on the downstream or outbound side of the backflow preventer. Depending on how your system was designed, there may be a valve to close between the backflow preventer and point of connection for the air compressor.

Next, go to the controller and set a zone/station to run for 10-15 minutes while you set up the compressor and fittings. Always keep a zone open from start to finish avoiding pressure build up and damage to system components. It is best to blow out the system from the zone/station closest to the water source and end at the zone/station farthest from the water source. This will push the air from the beginning of the system to the end or farthest point from the water supply, insuring that minimal water is left in the system.

Connect the compressor to the system mainline. This is usually done using a quick coupler valve or service “T” fitting. If possible, avoid connecting to the backflow preventer as high volume and high air pressure can damage the internal parts. Once you are connected to the mainline, open the compressor to about 40 psi-45 psi. After a short delay, you should see water being forced out of the zone that was manually set to run in the previous step. If the sprinklers do not reach full pop-up height add more air pressure in small increments until they look like they are operating normally.

From the controller, manually go through each zone/station for 1-2 minutes. Letting a zone/station run longer can produce heat which can damage rubber components or seals in the sprinklers and

If your pump is not enclosed/ heated it is especially important to winterize the system before heavy freezing occurs to give it some time to dry out before winter sets in.
valves. After each zone/station has been gone through once repeat the process one to two more times to make sure the water has been flushed out of the system.

Once the system has been blown out, open drain valves (if applicable) to drain any remaining water from the system. This will also discharge any back pressure left in the pipes. Drain the pump if applicable. Usually opening the drain plug on the bottom of the pump is sufficient, but 10 psi-15 psi of air through the pump will insure it is properly winterized. Do not put high amounts of air pressure through the pump as this may cause damage to the pump components. It is also a good idea to disconnect the pump wiring from the controller as well as disconnecting the power supply. This will keep the pump from operating dry if there is a power surge.

The next step is to winterize the backflow preventer. If the device was installed using unions it should be fairly easy to remove the device entirely and place it inside for the winter. If removal of the backflow preventer is not an option, then you should close the valves on each end of the device and open the test cock valves on the device. There are usually four of these one-quarter-inch fittings sticking out from the device. Use a screwdriver to open these valves. Turn the slotted fitting a quarter turn until it is perpendicular to the backflow preventer and blow 10 psi-15psi of air through these valves to flush water from the backflow device. Leave all valves on the backflow preventer open at a 45-degree angle. This allows any water that may freeze to expand through the openings instead of cracking the brass fittings if the valves are left closed.

Winterizing a vertical turbine pump can be difficult, but is still important even if it is enclosed in a heated pump house. It is a good idea to check the heating source every couple of days to make sure it is operating properly. If your pump is not enclosed/heated it is especially important to winterize the system before heavy freezing occurs to give it some time to dry out before winter sets in. If you are unfamiliar with your pump it is a good idea to contact the manufacturer’s representative to see if they have any recommended procedures.

First, open the connections or valves for Check Valves, Flow Sensors, and “Z” pipe. Next, open the closed isolation valve to the mainline and use the backpressure from the piping system to flush water from these components. It may be necessary to put small amounts of compressed air through these components to completely flush them.

Following these steps to properly winterize your irrigation system will make the spring turn-on quicker and easier with fewer repairs to be made.

Jeremy Link, CSFM is the owner of EcoFriendly Irrigation, LLC, Cincinnati, OH, link@ecofriendlyirrigation.com
Putting Turf to Bed

SHAWN MOORE, Albuquerque Isotopes

We are planning to do a lot this off season. Our biggest project will be replacing our infield edges with new sod. We have had several years’ worth of edging wear out and now it is time to add a little grass. This process also allows us to remove any build up, from conditioner and infield mix, in our edges.

Next on the agenda will be pushing our grass hard to fill in our bare areas from the mass exodus of poa. We accomplish this with a lot of quick release N and a heavy dose of major, micros and minor nutrients. A big part of this stage will be inter-seeding the field with a hand-picked blend of bluegrasses, topdressing with 50 tons of sand to try and remove any low spots, and pulling a large, deep core. Irrigation (or “irritation” as we call it) audits will be performed. We are constantly adjusting our irrigation through the year. This fall we will make sure the heads are spraying correctly, replace any nozzles that aren’t working perfectly and raise any heads that have become low due to topdressing.

Then, after all events are done around November 1, we will add material and laser grade our skinned areas as well as the warning track. We laser grade in the fall because college season starts in February when the weather is very unreliable. Finally when we take our Christmas break, around December 15, we will place turf blankets on the infield and sideline grass. Putting down a broad spectrum fungicide will protect us from disease while the blankets are on. The field then will be put to bed until late January when we take the blankets off.

PETER THIBEAULT, CSFM, Noble & Greenough School (MA)

With fall upon us and the growing season nearing an end I thought I would share some tips on how we plan to get through the fall and started in the spring. Keep in mind these are tips; not everything will work for everyone. This is related to the things that we do every day and never seem to have enough time to get accomplished exactly the way that we would like.

Not too many outside observers understand how much actually goes into mowing. When you are out there mowing you’re covering every square inch of the fields and can see anything that is going wrong. (Chances are you’re at least mowing something, even though we had one of the driest summers in 20 years.) We like to start the fall with a mowing height of 2 inches. This height I’ve found has given us an even canopy of Kentucky bluegrass and perennial ryegrass. Whatever height you mow at is best to try and not remove more than 1/3 of the plant at a time.

For us to follow this rule all turf is cut at least two times a week sometimes three times. Our field hockey starts at 1 1/2 inches. As the fall progresses we will gradually decrease our heights to 1 1/2 and 1 1/4 by decreasing the height as we go. We are trying to keep turf growing as temperatures cool and sunlight decreases.

One of the worst things that we do to our turf is mowing, and with that being said, sharp blades are a must. We change blades weekly depending on conditions. If aerating or topdressing we may need to change more frequently. If your blades are dull, you’re pulling and tearing at the plant, stressing it before the group of athletes gets out there to punish it more.

This brings up an important point that should take place at the end of every day or after leaving some diseased turf—washing the mower. We are not talking about rinsing the top of, but under the decks and under the mower taking care to get clippings out from brake system and from in between hydraulic lines. Be very careful to do a good job under the decks this is a breeding ground for bacteria and if not clean will create problems with disease and for the clippings to discharge. Keep you mower cleaned and greased daily and it will run and last the way that it was designed.

Next is aeration, something we never have time to do enough. Our aerator and tractor that pull it I think date back to the 70’s or early 80’s. The aerator is a pull behind type, so once it is down, that’s the way it goes, so we generally use a pattern that mimics making ice on the Zamboni. The tractor that pulls it runs on biodiesel the kids in the school produce. We can’t run this machine enough given the very low fuel expense. (My assistant, Dylan Satter, says the smell of fried food keeps him hungry all day.) Dylan, as does the other assistants I’ve had understand how we feel about aerating. In late March and late November we pull cores and break up the plugs. The rest of the season we use 6-inch slicing tines, which during the summer helps the rain and irrigation penetrate rather than run off. We are all environmental stewards, so by keeping up with aerating we are making sure our other inputs end up in the rootzone where they are needed.

During the fall season we will start with a pitchfork to the goals and team areas. We test compaction weekly with a penetrometer, so based off compaction and wear is how frequently we aerate. We will skip a mowing to ensure we get the aeration in. After all it is easier to aerate than to sod cut and install and who really has time for that? During the fall and spring we could aerate as often as every 2 weeks and usually broadcast seed after.

There are many factors that help us decide, Mother Nature being the biggest. If you have never aerated, I suggest at least 2 times a year with a plug type or hire a company to Verti-Drain. We use a company to do this process for us. We generally base this from event counts and compaction and wear levels. This service is generally not very disruptive to playing surface unless they are pulling boulders up everywhere. We have had this done on fields in morning and played in the afternoon. This service is not cheap, but is a lot cheaper than removing and replacing turf.

The last area is spring preparation. Most leave this until spring and
it usually creates difficult situations. Until the snow flies we will renovate all our worn areas and use covers to help speed up germination of the seeds and existing turf to recover. These covers will also defer traffic from happening as well. As always it is best to use signage to let people know what is going on. We will also go through our skin surfaces through the fall and weed and edge, making sure that we leave them ready to go for the spring. We find it easier to do weed removal and work the edges in fall when soils are cool and moist.

EDDIE WARCZAK, Wisconsin Timber Rattlers

We will core aerate and topdress immediately following the season. We only have a few wear areas that need to be re-sodded so that will be done following the aeration process. We then will go through the home plate area as well as our four bullpen mounds and game mound and make sure that they are all up to standard. Once we have them where they need to be we will put down 1-inch thick insulation over the top of them along with a tarp and sand bags so they will be all set to go in the spring.

We are trying Tenacity this year to try to knock out the bentgrass and Poa trivialis. We will be starting the first application the 17th of September with the last application on the 15th of October, spraying every 2 weeks. We also put down a snow mold application which usually occurs around the 3rd week in November. The snow mold has been very bad the past few years so we are looking at a few different options with that. The last thing that we will do is put down rat poison along the warning track and under our tarps, a few years ago we had lots of vole damage coming out of the winter since we started to put down the poison we have not had a problem since.

LEE KELLER, University of Vermont

Our fall sports schedule will end the last of October or very early November. We will then shut down and winterize our irrigation systems. By mid-October I will have all heads marked and as fields are finished we will begin to core aerate in two directions/overseed and fertilize to harden off for winter.

In Vermont winter can close in real fast or we may be able to work well into December depending on Mother Nature. Ideally I plan to core aerate all our fields and overseed at a 4-6lb/1000 rate doing it as a dormant seeding. I plan on fertilizing with a higher potassium fertilizer to harden off for winter.

We try to mow short (less than 2 inches) for winter to help prevent snow mold. We have had success with this in past years but are always looking at new ideas and ways. One of our biggest problems in past has been ice, mainly through January or February thaw or warmer temperatures followed by rain or melting snow. The water cannot drain through the existing frost layer and becomes ice!
MAXIMIZING FLEET PRODUCTIVITY starts with getting the most out of your vehicles. To a large degree, the best approach is driven by the type of fleet you operate and its drive cycles. In many cases, you may find that different techniques are required for individual groups of trucks within your fleet.

Making sure that you are using the right size vehicle for each application is a good starting point for optimizing vehicle productivity. If your trucks are fully loaded at the start of the day, but have to come back for a second load before the end of the shift, you may want to consider using larger trucks. This could save time and reduce total vehicle mileage. On the other hand, if your trucks start with a partial load and do not need to return during the day, consider using smaller, more fuel-efficient vehicles. Another right-sizing opportunity is to replace three trucks that operate in the same general area with two larger trucks. You may be able to equip the larger trucks with material-handling devices to speed up cycle times, making it possible to accomplish the same tasks in the same amount of time with one less vehicle.

If you are experiencing excessive downtime and on-the-road breakdowns, your trucks may be overloaded or improperly designed for the application. This not only destroys your fleet’s productivity, it is also dangerous and expensive. Take the time to learn how to properly match your trucks to your application before buying another vehicle.

TRUCK BODY AND EQUIPMENT DESIGNS

Specialized truck bodies, mounted equipment and other accessories

Fuel Economy Techniques

ACCORDING TO ISUZU COMMERCIAL TRUCK OF AMERICA, INC., reducing emissions and fuel consumption is a vital aspect of fleet management. Fleet managers can vastly improve their mileage by applying these valuable fuel-saving techniques.

1 STARTING FROM A STANDING STOP

Accelerate slowly up to 1,000-1,500 engine rpm, before shifting. Fuel consumption is at the lowest level when the engine runs in this rpm range. The accelerator pedal should be depressed 1/2 to 2/3 of the way. The difference between sharp acceleration and steady acceleration is 14 percent in fuel savings.

2 STEADY-SPEED DRIVING

Keep engine rpm just above the point where the engine stalls. Varying speed by more than three miles per hour with repeated acceleration and deceleration diminishes fuel economy up to 27 percent. Using the cruise control improves fuel economy because it eliminates speed variances.

3 FUEL-EFFICIENT SPEEDS

The most fuel-efficient speed is between 25 and 38 miles per hour. Generally, drive in the highest gear possible when going more than 28 miles per hour. High speeds are big fuel wasters; fuel economy increases 20 percent by reducing vehicle speed from 62 to 50 miles per hour.

4 NUMBER OF STOPS

The amount of fuel consumed for standing starts is equivalent to driving up an incline at full power. To save fuel, reduce the number of stops by adjusting the time of arrival so that the light has already changed to green. Try as much as possible to keep tire rotation from stopping.

5 TIRE INFLATION

Fuel economy is reduced 8 percent when tires are under-inflated by only 20 percent. Always maintain proper tire pressure. Tubeless radial tires offer the lowest rolling resistance and can increase fuel economy 13 percent compared to bias tires.

6 PROPER ENGINE MAINTENANCE

A clogged air cleaner can reduce fuel economy up to 5 percent. Improper fuel injection timing also reduces fuel economy by 5 percent, as well as increasing heat loads and lowering engine reliability. Using summer engine oil with a 40-50 SAE viscosity in the winter can also reduce mileage; always change to an appropriate oil for a particular season, or use a multi-grade oil.

Information provided by Isuzu Commercial Truck of America, Inc. For more information about how to help your operation improve fuel economy, visit www.isuzucv.com.
designed to make work trucks more productive are constantly being developed and improved. If you haven’t updated your components in a while, you may not be using the best components available for your application. Before you buy another truck, make a detailed review of your current and projected work truck requirements, then determine if there are newer products available that could improve your trucks’ productivity.

If you are not currently using specialized bodies or equipment, see what’s available. A combination of increasing labor costs and the availability of new components may make it worthwhile to upgrade to more specialized truck bodies and equipment. Take the time to research what’s available. This may mean talking to your local truck equipment provider, doing research on Web sites, and/or attending a truck equipment trade show where you can compare what’s new from a number of manufacturers all in one place.

REDUCING STATIONARY FUEL CONSUMPTION

One measure of productivity is the quantity of assets used to perform a specific task. This may be measured in hours of labor per unit, total cost per unit, or in the case of a work truck gallons of fuel burned per task. The Department of Energy has estimated that the typical Class 6 / 7 work truck has an equivalent fuel economy of around 6 miles per gallon. In many cases, a significant portion of that fuel is burned in non-productive operation (idling) or while operating engine-driven auxiliary equipment (PTO operation). Anything you can do to reduce this type of engine operation will have a direct impact on your fleet’s productivity. In addition, many cities, counties and even states have implemented idling restrictions for commercial vehicles. Expect even more areas to adopt these restrictions in the future.

Many newer trucks can be programmed to automatically shut down the engine after a specified period of idling. Aftermarket systems are also available, as well as systems that will automatically start an engine during PTO operations when there is a demand for power and then shut it down after a specified period of no demand. In some operating cycles, these systems can produce significant reductions in non-productive engine operation.

The need for auxiliary power at a job site does not necessarily mean that you have to operate your truck’s engine for extended periods of time. Many soft hybrid technologies provide auxiliary power on demand. These include electric PTOs (E-PTOs), battery-powered static inverters to provide commercial-quality AC electric power (120- and 240-volt) and auxiliary engine-driven systems. Auxiliary engine power systems are available to provide commercial-quality electricity, welding capabilities, hydraulic power and compressed air.

In addition to the auxiliary engine-driven systems mentioned above, electric-powered (battery) systems are also available to support cab heating and cooling for shorter periods of time. Fuel-fired sys-

NORDOT® Adhesive #34P

Thixotropic One-Part Curing Urethane With a Light Mayonnaise Type Consistency.

- High and fast development of green strength (high grab) in cool/cold weather.
- Easy application and spreading even when cold.
- "Stands up" and holds trowel ridges on both flat and vertical surfaces.
- Ideal for applying to seaming tape from a "glue box".
- Great for faster bonding of hash marks, team logos, game lines and other turf inserts.
- Excellent fast repair adhesive.
Keeping Up With Technology

FLEET MANAGERS are faced with a seemingly impossible task when it comes to staying current on all of the new technologies found on today’s vehicles. There is literally not a single component on a new truck, truck body or unit of truck-mounted equipment that has not been touched by technology in recent years. These changes can impact the way you operate, maintain and repair your fleet. They can also affect how you design and specify your vehicles. However, to properly adjust to these new technologies, you must first be aware of them and understand how they impact your fleet.

Advances in electronics and integrated technologies like hybrids and vehicle emissions systems have been getting most of the headlines in recent years. But behind all the glamour, there has been a revolution in materials, manufacturing processes and vehicle and equipment design. Fleets are now part of a “high-tech” industry that requires constant efforts from fleet managers and maintenance personnel to stay current.

Understanding New Technology

To keep up with current and future changes, make sure you are aware of new technology; understand how it impacts your operations; and know how to use, maintain and repair the components that utilize the new technology. One thing you don’t have to do is fully understand how new technology works. Some industry professionals become so involved in studying how a new technology operates that they either lose site of the real objectives — learning how to use, maintain and repair it — or just give up in frustration.

Becoming Aware of New Technology

Some technological advances, such as diesel engine emissions systems, have received so much attention that it would be almost impossible to find a fleet manager who has not heard about them. However, to become aware of the more mundane changes in vehicle and equipment technologies, you need to make a conscious effort.

Once you become aware of a new technology, determine how it will impact your operations. In many cases, you will have no say as to whether or not you adopt a new technology — it will just come with the vehicle (like electronic power train control systems), and it will be your responsibility to learn what you need to know. In other cases, the new technology may be optional. In this instance, a sales representative may tell you that the new technology is the greatest thing since sliced bread and that you cannot live without it. But remember, you know more about your business than anyone else. A new technology may be wonderful in the proper application, but this may not be yours.

If you think a new product or technology may have an application in your business, learn about it and then make your own decision as to whether it should be implemented. In many cases, new technologies also mean increased acquisition costs, so you will need to factor in the life-cycle cost benefits of the proposed innovation. Many industry trade shows offer extensive educational opportunities to learn more about these new technologies through formal educational seminars and the opportunity to talk one-on-one with manufacturer representatives, engineers and technical experts on the show floor.

Implementing New Technology

Whether a new technology comes to you by default (already on the vehicle) or through your own decision to implement it, be sure to determine how it will impact your daily operations, maintenance practices and repair requirements. Also, educate the employees impacted by the technology as necessary and acquire any new tools and test equipment needed to properly work with the technology. Lack of training and understanding are among the biggest reasons a new technology is resisted in a fleet application. For example, when electronic ignition systems were first introduced in regular production vehicles, aftermarket vendors actually sold kits to replace the electronic systems with conventional breaker point systems. Inside of three years, as people grew to understand the benefits of the electronic systems, these kits disappeared from the market. If your workers know the benefits and how to work with the new technology, you’ll likely have minimal problems.—Robert “Bob” Johnson

Late fall fertilization

FALL IS THE TIME OF YEAR when cool-season turfgrasses recover from summer stress related; conditions; such as drought, heat, and disease. For athletic fields, fall is also the time that turf takes a beating from football and other school sports activities. This year, many athletic field managers will be making late fall fertilizer applications with the hopes of improving turf vigor and recovery from injury next spring. Here we examine how late fall fertilizer applications influence turf performance, when to make your applications, as well as the types of fertilizers and rates which provide the best turf response.

Late fall fertilization has been promoted as a means of prolonging turf color of cool-season grasses into early winter without increasing the chance of winter injury and disease. Winter color is more noticeable in regions where winters are warmer (Mid-Atlantic and transition-zone states) and during mild winters. Late fall fertilization will also enhance spring green-up without the excessive growth that often accompanies early spring fertilization. This green-up often will last into mid spring, so an early spring fertilizer application is not needed. A fertilizer application in mid to late spring is usually required to sustain turf color and growth into the summer months.

A small but potentially important increase in the plant’s carbohydrate reserves occurs when fertilizer is applied in late fall instead of early spring. Turfgrasses accumulate carbohydrates in stems and rhizomes during fall. These carbohydrates help turf resist winter injury and aid in disease and environmental stress resistance the following spring and summer. Because carbohydrates are tapped for energy by roots and shoots during periods of rapid growth, forcing excess growth with early spring fertilizer applications can deplete carbohydrates quickly, leaving turf vulnerable to spring and summer stresses. Late fall fertilizer applications do not force as much leaf growth in spring as equal amount of early spring fertilizer, thus carbohydrates are not exhausted as quickly. The result is a slight advantage to the turf in the form of better stress tolerance and disease resistance.

A small but potentially important increase in the plant’s carbohydrate reserves occurs when fertilizer is applied in late fall instead of early spring. Turfgrasses accumulate carbohydrates in stems and rhizomes during fall. These carbohydrates help turf resist winter injury and aid in disease and environmental stress resistance the following spring and summer. Because carbohydrates are tapped for energy by roots and shoots during periods of rapid growth, forcing excess growth with early spring fertilizer applications can deplete carbohydrates quickly, leaving turf vulnerable to spring and summer stresses. Late fall fertilizer applications do not force as much leaf growth in spring as equal amount of early spring fertilizer, thus carbohydrates are not exhausted as quickly. The result is a slight advantage to the turf in the form of better stress tolerance and disease resistance.

One study in Virginia showed that moderate rates of soluble nitrogen (1 lb nitrogen/1000 sq ft) in late fall increased rooting of turfgrass without a noticeable increase in shoot growth. In contrast, a study in Ohio showed no increase in root growth during late fall or winter following late fall fertilizer applications. However, when compared to early spring applications of nitrogen, late fall fertilization allowed more rooting in spring. Presumably, this benefit was due to early spring green-up from late fall applications, which alleviated the need for early spring fertilization. When fertilizer was not applied in late fall, but instead, in early spring, excessive shoot growth occurred, depleting carbohydrate reserves that would have otherwise gone into root production later in spring. The take-home message from the Ohio study is that while the net effect of late fall fertilization on rooting is slight, application in late fall may be more beneficial with respect to rooting than an early spring application.

Late fall fertilization is occasionally blamed for increased winter injury, snow mold, and annual bluegrass encroachment. A few studies have been designed to examine the influence of late fall fertilization on winter injury. But to my knowledge, none have conclusively demonstrated detrimental effects. Heavy fertilization in mid-fall, when grass shoots are actively growing, can enhance snow mold diseases (presumably due to reduced pre-winter hardening and increased succulence of plant tissue). Increased plant succulence should not occur with late fall fertilization. In fact, some research has shown that late fall fertilization may actually reduce winter diseases.

While some studies have shown increased annual bluegrass populations in fall, there is no good evidence to show that this increase is related to late fall fertilization.
WHEN TO APPLY

Most experts agree that late fall fertilization should take place when foliar growth stops (or slows to the point that turf no longer needs to be mowed), grass is still green, and before the soil freezes. In Pennsylvania, this period usually occurs around Thanksgiving. Application timing may vary from year to year depending on weather conditions.

Most late fall fertilization programs include moderate amounts of nitrogen, phosphorus, and potassium. Rates of 1 to 1.5 lb of mostly soluble nitrogen/1000 sq ft are suggested over higher rates (assuming a late summer application was made) to avoid excessive growth in spring and nitrogen leaching or runoff. One study at the University of Illinois showed that when nitrogen was applied at moderate rates in late fall (1 lb of nitrogen/1000 sq ft) both urea and sulfur-coated urea provided a better early spring color response than Milorganite. However, when Milorganite or sulfur-coated urea was applied in late fall at a higher rate of nitrogen (2 lb of nitrogen/1000 sq ft), spring green-up was similar to that obtained from applying urea at a lower rate (1 lb of nitrogen/1000 sq ft in late fall).

Slow or controlled-release nitrogen sources may be a better choice than soluble sources on sandy soils because of reduced potential for leaching. Nitrogen fertilizer should never be applied to frozen soil due to the increased chance of nutrient runoff.

Although application timing is not as critical with phosphorus and potassium as it is with nitrogen, these elements can benefit turf when applied in late fall. Phosphorus is important for root growth and maturation of turfgrasses and application rates should be determined according to soil test recommendations. If your soil test report indicates a need for phosphorus, late fall is a good time to fertilize. However, there is no need to apply additional phosphorus if it is present at sufficient levels. Turfgrasses require potassium in relatively large amounts, so annual applications are usually required. This element may enhance cold-hardiness, disease-resistance and wear-tolerance. Late fall is an ideal time to fertilize with potassium.

Late fall fertilization should take place when shoot growth ceases, the grass is still green, and before the soil freezes. Benefits of fertilizing in late fall include better winter color, enhanced spring green-up, and possibly increased rooting.

Typically, moderate amounts of soluble nitrogen provide good turf color without excessive shoot growth in early spring. However, slow-release nitrogen sources can also provide a good color response in early spring when used at higher rates. To avoid potential leaching and runoff problems, use slow-release nitrogen sources on sandy soils. Do not apply fertilizer to frozen soils.

Dr. Peter Landschoot is professor of turfgrass science in Penn State’s Department of Crop and Soil Sciences, and he originally wrote this article for a Cooperative Extension publication.
SPREADERS FROM CURTIS INDUSTRIES
The Sno-Pro Fast Cast 550 spreaders are versatile to handle most materials. From sand/salt in the winter to seed and fertilizer in the summer, they can quickly attach in the back of either a UTV or pickup truck bed. These spreaders come in either aluminum or polymer coating and are designed to be energy efficient using a durable electric 12V battery. The Sno-Pro Fast Cast 550 spreaders come complete with everything needed for easy installation including tie-down straps and wiring harness. All spreaders are lightweight and offer an adjustable output to control the flow and dispersion of material. www.curtisindustries.net

DIGITAL JOB TRACKER
The V-Maxx Salt-Traxx digital job tracker allows you to document and evaluate salt spreading applications. It plugs into the existing controller on select SnowEx V-Maxx spreaders and records data such as the amount of salt used and time spent on each job. The operator first selects the pre-set job number for a specific client or property. After the job is started, the unit measures the total amount of salt being spread according to the V-Maxx controller settings and time elapsed. The data is displayed on a digital read-out and also saved to a standard removable USB memory stick. www.trynexfactory.com

TORO POWER MAX TWO-STAGE SNOWBLOWERS
Toro Power Max two-stage snowblowers can throw up to 2200 pounds of snow per minute up to 45 feet away, and are engineered with patented features that make them much easier to maneuver. Innovative features include freewheel power steering that allows operators to turn on a dime and an auger system that powers through deep drifts and compacted snow. Other features include a Quick Stick joystick that allows operators to quickly and easily change the direction the snow is being thrown. The system includes handle-mounted triggers that give the operator the ability to clutch the wheels independently or simultaneously with just the flex of a finger enabling the wheels to “freewheel.” The system also makes it easy to move the snowblower in and out of tight storage areas. www.toro.com

NEW WIRELESSLY CONTROLLED SPREADERS
SnowEx introduces the new SR-110 and SR-210 utility spreaders, compact units equipped with wireless controls that allow simple plug-and-play operation. Both models attach to a variety of vehicles and feature a 3-cubic-foot capacity hopper. The pocket-sized wireless remote controls the rate of the two-speed spinner and toggles the electric motor on and off. The SR-210 spreads up to a 25-foot range. It features a vertical high-flow auger that works in conjunction with the spinner and allows the unit to spread bulk materials, such as bagged rock salt or calcium flakes, whereas the SR-110 spreads material up to a 20-foot range and uses a gate feed system, allowing it to handle small calcium chloride pellets or bagged ice melters. The SR-110 includes a cable to open and close the gate from the cab. www.trynexfactory.com

TURF TEQ PLOW
Turf Teq has introduced the 46-inch wide Model 1305PL Plow. The Plow’s angle (left/right) can be easily adjusted from the operator position and it has the capability to allow the blade to oscillate or to be locked into position. The 1305PL features a spring loaded trip release and a replaceable cutting edge while employing a fully hydrostatic transmission with forward/reverse and a 13-hp Honda engine. The Plow can also be easily converted into a Power Edger, Power Broom, Power Rake or Brush Cutter for all season use. www.turfteq.com

Before you store
Here are simple, routine steps you should take when preparing to store your equipment for the winter.
- Drain fuel if possible, or fill tank with fresh fuel and add fuel stabilizer then run engine for a short period of time;
- Check equipment for damage and make repairs;
- If paint is chipped or damaged, touch up to prevent rust;
- Check for any fuel or oil leaks and repair if necessary;
- Check blades, tines or belts and repair or replace;
- Keep maintenance records handy for easy reference at the beginning of the next season.
HONDA HS928 SNOWBLOWER

The HS928 employs a specially designed, heavy-duty, height-adjustable serrated auger to slice through icy snow build-up deposited by snowplows. Features include:

- Honda OHV Commercial Grade Engine
- Infinitely variable speed control hydrostatic drive train
- 28” Clearing Width, 20” Clearing Height
- Self-propelled, Wheel drive
- Automatic Decompression for Easy Starting
- Adjustable Snow Deflection
- A Single Lever Accurately Adjusts Ground Speed without Affecting Auger Rotation Speed
- Ice Breaking Serrated Auger
- 210º Adjustable Discharge Chute Easily Controlled From Operating Position
- Interconnected Drive/Auger
- Convenient Control Levers
- Metal Auger Housing
- 3 Year Residential / Commercial Warranty

www.hondapowerequipment.com

TANK S WINTER ATTACHMENTS

Cub Cadet Commercial is making it easier to complete all tasks regardless of season by introducing winter attachments for the innovative TANK S. Complete with cab enclosure system, snow blade and salt spreader, the TANK S can now handle even the heaviest snowfall. To protect the operator from the elements simply secure the cab enclosure and climb inside. For increased control, the TANK S uses its Synchro-Steer Technology giving the operator full directional control of the front casters for superior handling in rough terrain. Add on a durable snow blade and salt spreader capable of holding 80 lbs. and the TANK S transforms into the perfect all-season product.

www.CubCadetCommercial.com

FRONT-MOUNTED SNOWBLOWER FOR BOBCAT COMPACT TRACTORS

A front-mounted snowblower with a 72-inch cutting width is now available for Bobcat compact tractors (models CT 225 to CT450). The new snowblower joins front-mounted models with 49- and 62-inch cutting widths introduced last year. Features include quarter-inch-thick steel endplates, a half-inch-thick replaceable steel cutting edge, a 20-inch-diameter six-blade fan with adjustable opening, a 24-inch-tall snow intake and 230 degrees of chute rotation. Tractors must be equipped with a mid-PTO as well as a loader joystick and control valve. A lift kit controlled by the loader joystick hydraulically raises and lowers the snowblower. The loader joystick also hydraulically controls the chute rotator so that the operator can easily redirect snow as needed.

www.bobcat.com/utility_machines/tractors

CoverSports FieldSaver®

Winter Turf Blankets/Growth Covers!

Protect turf from Winter conditions! Promote faster Spring growth and green-up!

“The results were incredible!...”
Paul Heron, Grounds Supervisor Unionville-Chadds Ford School District, PA

FieldSaver® is a longer lasting blanket - 8 Year Limited Warranty
- Heavy 100% woven polypro fabric
- Reinforced hems and grommets all edges

Grommets at 5' intervals
New yellow safety stakes available

Special offers ONLY at www.CoverSports.com/ST
For price quotes, sizes and fabric specs, visit www.CoverSports.com/ST

www.stma.org
Developing an environmentally sound industry (and letting people know about it)

RECENTLY AN STMA FRIEND called me a treehugger, and meant it as a compliment. I’ve been figuratively hugging trees for years, but it wasn’t long ago that environmentalism and turfgrass management seemed worlds apart. It’s wonderful to see us moving steadily toward closing that gap as our industry evolves.

The attitudes of society are also changing. Bluntly stated, as our civilization has grown and spread, environmental degradation has followed. Our generation has recognized that this trend cannot continue. We want to mend the dysfunctional relationship between the human population and the rest of the natural world. (It’s a pity clean air and water have become political kickballs.)

We must deal with humankind’s dirtier habits and the danger they present to the planet’s life-supporting capacity. On March 20, 1987 the Brundtland Commission of the United Nations signaled this commitment to sustainability when it lucidly stated, “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” This means rethinking how we do things, including managing sports turf. [The inimitable Dr. Robert Carrow of the University of Georgia published an excellent overview of the issues, including the need for our industry to be proactive, in the July 2010 issue of this magazine, p. 18.]

We’ve entered a new age of stewardship in the world of sports. Rainwater recycling, solar panels, waterless toilets, recycling bins, LEED certification, and the MLB/NRDC initiative are just a few examples of this exciting new momentum. But as sports turf managers, we are the front line of facility operations. No field, no game. As we embrace a cleaner future, the Sports Turf Managers Association should represent the face of environmental stewardship in sports.

Following the lead of golf course management, we have embarked on the journey of honest reappraisal and systems overhaul. [I have addressed this process previously in SportsTurf articles detailing Environmental Turf Craft in October 2006 and January 2008 issues.] As stewards we’ve been busy learning to fine tune our operations to reduce waste and conserve resources. We are rethinking our N and P fertility programs and implementing other ecologically compatible management strategies to improve efficiency and prevent pollution. It’s a labor of love and a work in progress with much to learn and lots to do.

ORGANIC FUNDAMENTALIST JIHAD

We have grown especially prudent in the use of pesticides. For ecological, social and/or economic reasons, there are a growing number of facilities now being managed with little or no pesticide use. To us as turf managers, the difference between “pesticide-free” and “almost pesticide-free” appears very slight. But to some activists and critics, the difference remains ideologically central.

In this modern age of extreme polarization, dialogue is needed more than ever but has never been more difficult to initiate. Websites across cyber space are actively converting soccer moms into internet toxicologists, implying that children are being recklessly exposed to toxins. Regrettably, the general public’s grasp of science continues to weaken, leaving them vulnerable to confusion and misinformation.

Consider the document called “Pesticides and Playing Fields,” posted on the website of a prominent anti-pesticide group. This document, (ironically called a “fact sheet”) states, “The typical soccer field is deluged with a mixture of poisons designed to kill fungus, weeds, and insects.” Evidently, facts are of little significance in the jihad of some organic fundamentalists. It should be possible for the author to promote organics without slingng this kind of manure. We must work harder than ever to counteract this type of inflammatory deception. Ultimately, extremists impede progress.

We need to continue to set the record straight regarding our commitment and our commanding sense of responsibility as sports turf professionals (and as parents ourselves). As American humorist Will Rogers said, “Even if you’re on the right track, you’ll get run over if you just sit there.” We need to be actively involved in separating fact from fiction. As working professionals we recognize that, outside of utopia, compost tea won’t solve every problem. Science and the sensible middle ground of IPM are under attack, but they’re not dead. We have to stay visible, vocal and accessible as the genuine experts in the field of environmentally compatible turfgrass management.

We also need to be circumspect. Greenwashing (the use of environmental themes to whitewash environmental shortcomings) could create irreparable damage to our mission, integrity and image and must be guarded against. Too many industries are already succumbing to the sleazy temptation of misrepresenting their environmental achievements in order to win public approval. We also must not automatically call ourselves “environmentalists”, convinced of our own green credentials, strictly because of our association with a product that is inherently green—grass. It’s a title that needs to be earned.

Yes, science has demonstrated that turf provides obvious environmental benefits but our management decisions will determine if these benefits are realized, or negated by debits to the ecological balance sheet. We are responsible for finding the balance to maximize these benefits
while minimizing the negative impacts from chemical and fertility mis-
management and yesterday’s equipment and procedures. It may also be
time for our industry to confront unrealistic, situation-inappropriate
expectations. Major league perfection in Little League settings will not
prove sustainable.

There are exciting developments and prospects to report about.
The Global Sports Alliance (GSA) was very pleased to sign a
Memorandum of Cooperation with the STMA in March 2009 indi-
cating the two organizations’ shared commitment to promote envi-
ronmental stewardship among sports enthusiasts. To launch the
agreement, a document providing useful guidelines for planning
‘Green’ sports events was collaboratively issued and is posted on the
STMA’s outstanding Resources/Environmental Stewardship page.
[Kudos to STMA’s Education Manager, Kristen Althouse, for devel-
oping this Resource section.]

Additionally, several sports turf managers are currently serving as
GSA Team Captains, actively promoting environmental awareness and
action in the world of sports and advertising their green accomplish-
ments by flying GSA’s Ecoflag. Also, in an important step this year,
the STMA kicked off an Environmental Task Group to tackle the
issue of sustainability and our role in environmental stewardship in the
21st century. And in another noteworthy development, there is growing
interest in exploring collaboration with Audubon International and
the potential for designing a sports facility program based on their
everously successful Cooperative Sanctuary Program. Stay tuned
(and show your support at the state and national STMA levels).

Environmentalist Paul Hawken has written, “It has been said that
environmentalism failed as a movement, or worse yet, died. It is the
other way around. Everyone on earth will be an environmentalist in
the not too distant future, driven there by necessity and experience.”
The fouling of air and water and the destruction of habitat and loss of
biodiversity threatens all life on earth, including our own. Future gen-
erations will live with the choices we all make today. STMA members
have an opportunity to lead by example.

Kevin Trotta BS, MA, is the New York Team Captain of the Global
Sports Alliance and the principal proponent of Environmental Turf Craft.
He can be reached at turfIPMguy@aol.com.