At the recent meeting of the ASTM F08.64 and F08.65 subcommittees, new sports field standards were proposed that will benefit Sports Turf Managers Association (STMA) members and all turf managers in the near future. The issue of lead chromate in synthetic turf fibers was also discussed at the meetings in great detail. The F08.65 subcommittee on synthetic turf athletic fields has formed a task group to work on this issue.

The STMA is actively involved with ASTM International, one of the world’s largest and most recognized standards writing organizations. The standards produced by ASTM are reference documents that attempt to limit variability between the products and services of many different industries. ASTM standards exist for a wide variety of products including both natural and synthetic turf athletic fields.

Guide for Quality Control Procedures During The Construction of Natural Playing Surfaces. This new standard outlines proper practices to be used in the sampling and quality control testing of rootzone materials used during the construction process. The standard covers gravel, sand, organic amendments, and finish-blended rootzone mixes. It will be a valuable tool in future construction specifications.

Evaluating Warm and Cool Season Athletic Field Maintenance Programs. These two proposed new documents will provide a standardized method for evaluating the quality of maintenance programs used to for warm- and cool-season athletic fields. Factors such as soil testing, aeration, fertilization, and mowing frequency (including many others) will be weighted in order to assign a rank/grade to a facility’s maintenance program.

New Equestrian Surfaces Sub-Committee Formed. Increased attention has been given to “alternative sports” within both STMA and ASTM over the past 2 years, with the majority of this interest focusing on horse racing. Little scientific information exists regarding how to properly maintain surfaces used for horse racing. Furthermore, acceptable levels of surface quality have not been outlined. The new ASTM subcommittee is Equestrian Surfaces, F08.28.

The Issue of Lead Chromate on Synthetic Turf Fields. Lead chromate is a pigment used to color synthetic turf fibers. Fibers with lead-based pigments are brighter than those with non-heavy metal pigments. Lead chromate is often confused with lead carbonate, which was a principle component of lead-based paint. Lead chromate must be encapsulated in order to be incorporated into synthetic turf fibers.

In light of the recent media controversy regarding potential health hazards to athletes competing on synthetic turf fields from lead chromate exposure, ASTM subcommittee F08.65 formed a task group to work with the Synthetic Turf Council (STC) on this issue.

The STC released a statement in April 2008 on this issue. The STC said, “Trace amounts of lead exist in everyday products. The key issue is ensuring that quantities of lead that might be harmful to health cannot be absorbed into the body. Used to extend the yarn color lifespan in some synthetic turf products, lead chromate is encapsulated in plastic to prevent any health risks.”

James Brosnan is Assistant Professor of Turfgrass Weed Science at the University of Tennessee. Michael DePew is agronomist/soil scientist for Environmental Technical Services, Tekonsha, MI.
Tall fescue can work for high school baseball

By Brad Park

A high school baseball field in Southern New Jersey was a great candidate for renovation and establishment with tall fescue given the transition zone climate and minimal management inputs in the future (Photo by Brad Park).

A common mistake among park and recreation, public works, and board of education sports field managers as well as engineers and architects responsible for authoring specifications is the failure to select the best adapted turfgrass species for establishment on fields with unique site characteristics.

Too often turf managers will select commercially available seed sold as a “Sports Turf Mixture” or “High Traffic Mixture” without examining the turfgrass species and individual varieties used to compose these mixes. In some cases, a blend of improved varieties, as opposed to a mixture of different species, is a better choice. This article describes a case study where I made a seeding recommendation for a blend of tall fescue varieties on a high school baseball field based on climate, ability for field closure, projected management inputs, and turfgrass variety performance data generated by university-based research.

Site assessment

I visited a high school varsity baseball field in Cumberland County, NJ (southern, transition zone climate) in late fall 2007 for the purpose of assessing existing turfgrass conditions and providing recommendations for playing surface improvement. The field consisted of a light colored, low-density, coarse textured tall fescue variety (likely Kentucky 31), small patches of Kentucky bluegrass, and crabgrass (weed skeletons and voids in perennial turfgrass apparent). School personnel reported that turfgrass management inputs were limited to mowing. There were no records of fertility applications and although there was a water source available and the high school owned a water reel, it was seldom employed to irrigate the baseball field.
Table 1. Plan devised for submission to a contractor to renovate a high school varsity baseball field in Cumberland County, NJ.

Early August 2008:

- Apply glyphosate at high labeled rate for nonselective control of tall fescue (i.e. Roundup PRO at 3.0 qts/acre)
- Allow for complete turfgrass and weed control (approximately 14 days)
- Mow to 1 inch and remove debris
- Core cultivate using reciprocating tine unit (3/4-inch tines; 2x over field)
- Apply lime at 35 lbs/1000 sq. ft. (Lime requirement determined by soil test)
- Reincorporate cores and incorporate lime via dragging
- Slit-seed tall fescue at 8 lbs seed/1000 sq. ft. (two directions over field; 4 lbs seed/1000 sq. ft. in each direction)
- Apply complete starter at 1 lbs N/1000 sq. ft.
- Irrigate until established using school’s water source and temporary, above-ground irrigation pipe
- Apply 1 lb N/1000 sq. ft. approximately 2 weeks following seedling emergence; 30% of N should be in a slowly available form

Significant improvements in the turfgrass quality of tall fescue have been achieved through breeding since the release of the cultivar Kentucky 31 (foreground) in 1940 (Photo by Brad Park).

The weed population and inconsistency of cool-season turfgrass cover made the baseball field a strong candidate for turfgrass renovation; additionally, the field was not scheduled for use in summer and fall 2008. While the Board of Education would not likely be able to perform the renovation work in-house, funds would be allocated for contracting-out the work.

Site preparation

It was important to provide the high school detailed instructions on site preparation and seeding (Table 1); specifications are often loosely written and contractors subsequently use ineffective methods to attempt to establish turfgrass. A nonselective herbicide application was justifiable given the high population of undesirable tall fescue in the field. The field would likely take on a very patchy appearance (both in color and leaf texture) if the field were simply overseeded with a dark, fine-leafed blend of turf-type tall fescue varieties without first providing nonselective control of the existing vegetation.

The renovation timing (late summer), core cultivation, and slit-seeding methods were identical to those performed during the successful renovation of Tiger Field, East Brunswick Vocational and Technical School, East Brunswick, NJ in 2004 (see *SportsTurf* March 2005). Similar to Tiger Field, this baseball field would be closed during the late summer and fall renovation process—the ideal time for the establishment of cool season turfgrasses in the Northeast and mid-Atlantic.

A recommendation was made to apply lime at a rate of 35 lbs/1000 sq. ft. (lime requirement determined by soil testing) immediately following core cultivation (Table 1). This recommendation was based on recently published research results where Schlossberg et al. (2008) found that surface applications of lime following core cultivation accelerated the rate of acid neutralization (increasing soil pH) in the top 4.5 inches of soil. Tall fescue seeding rates are typically recommended at 4 to 8 lbs. seed/1000 sq. ft. The 8 lbs/1000 rate was recommended (Table 1) due to the crabgrass in this field. A denser turf will be more resistant to potential crabgrass encroachment in spring 2009, particularly if a preemergence herbicide application for control of crabgrass is not made.
Table 2. Commercially-available tall fescue blends identified by contacting local distributors and deemed acceptable for a high school baseball field in Southern New Jersey by examining NTEP and Rutgers-generated traffic research.

<table>
<thead>
<tr>
<th>Blend A</th>
<th>Blend B</th>
<th>Blend C</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0% Padre</td>
<td>33.3% 2nd Millennium</td>
<td>33.3% Turbo</td>
</tr>
<tr>
<td>32.0% Magellen</td>
<td>33.3% Olympic Gold</td>
<td>33.3% Tempest</td>
</tr>
<tr>
<td>31.0% Biltmore</td>
<td>33.3% Avenger</td>
<td>33.3% Magellen</td>
</tr>
</tbody>
</table>

Turfgrass selection

For the following reasons, a blend of improved turf-type tall fescue varieties was recommended for seeding at this field: Regular nitrogen (N) inputs and frequent irrigation is unlikely in the future and tall fescue can exhibit good turfgrass quality under low soil moisture conditions and fewer N inputs compared to other cool season species such as Kentucky bluegrass and perennial ryegrass. Among cool season turfgrasses suitable for sports fields in the Northeast and mid-Atlantic (i.e., Kentucky bluegrass, perennial ryegrass, and tall fescue), Turgeon (1999) classifies tall fescue as the most heat tolerant—a desirable trait for the high temperatures common to summers in southern New Jersey. Similarly, tall fescue is better adapted to this school's mowing program compared to Kentucky bluegrass and perennial ryegrass as the mowing frequency is projected to be 1x per week at 3.0-inch using a rotary mower.

As part of wintertime extension functions, I am frequently asked, "How do I find turfgrass varieties that perform well in National Turfgrass Evaluation Program (NTEP) or other trials?" The answer is simply, "You must do your homework, which involves calling local seed distributors and inquiring about not only seed blend availability but also the varieties that comprise the blend." To illustrate this point, local distributors were contacted and three acceptable tall fescue blends were identified (Table 2).

The performance of tall fescue varieties composed of Blends A, B, and C (Table 2) was assessed by examining nationwide NTEP research (www.ntep.org) as well as tall fescue traffic tolerance research conducted as part of NTEP trials at Rutgers University (www.turfrutgers.edu/research/reports).

The 2006 NTEP tall fescue trial at Rutgers was subjected to wear and compaction (traffic) in fall 2007; Padre and Biltmore (components of Blend A) were among the most traffic tolerant (NTEP, 2008b). Also, Padre was among the most traffic tolerant in the 2001 NTEP tall fescue trial at Rutgers when evaluated in 2002-03. Padre, Biltmore, and Magellen were top performing...
entries when assessed for turfgrass quality averaged across 11 locations under a Schedule B level of maintenance in the 2001 NTEP tall fescue trial (NTEP, 2008a).

Schedule B maintenance was defined by NTEP as a 2.5 to 3.5-inch mowing height; 0 to 2 lbs N/1000 sq. ft. annually; and either no irrigation or irrigation only during severe drought stress to prevent dormancy. It was important to assess the varieties under the Schedule B maintenance level because these management inputs best simulated the projected for the baseball field.

The three varieties included in Blend B, 2nd Millennium, Olympic Gold and Avenger were among the highest ranked varieties for turf quality in 2002-05 across all testing locations maintaining trials under Schedule B (NTEP, 2008a), 2nd Millennium and Olympic Gold exhibited superior traffic tolerance in the same NTEP trial at Rutgers in 2002-03.

Within Blend C, Turbo was among the traffic tolerant following fall-applied wear and compaction in 2007 at Rutgers and among the highest ranked entries for turf quality averaged across all locations in 2002-05 and 2007 under Schedule B maintenance (NTEP, 2008a; NTEP 2008b). The variety Tempest was tolerant of traffic stresses applied in 2003 in New Jersey.

Brad Park is Sports Turf Research & Education Coordinator, Rutgers University, New Brunswick, NJ and a member of the Sports Field Managers Association of NJ Board of Directors. He can be reached at park@aesop.rutgers.edu.

Southern NJ case study results

The inappropriate selection of turfgrasses and poor site preparation and establishment procedures often results in the underperformance of natural turf sports fields, leading some board of education and municipal decision makers to prematurely convert natural turf fields to synthetic alternatives.

Turfgrass species selection must be preceded by a thorough examination of existing field conditions, assessing the extent to which site preparation can be performed, and projecting future management inputs such as mowing, irrigation, and fertilization.

Turfgrass variety performance data is now available in a matter of seconds with several clicks using the internet; sports field managers should use these resources to select top-performing blends and inquire with vendors about the availability of top-performing varieties. The turfgrass selection process and renovation steps described in this article can serve as a template to assist sports field managers in their decision-making.