Pitt reduces aggressive thatch

Dan Potchak, grounds supervisor at the University of Pittsburgh’s Johnstown campus, was looking for solutions to his chronic thatch problems, drainage issues, and poor soil structure. Climate conditions in the mountains of western Pennsylvania and heavy schedules for a limited number of sports fields create a doubly difficult problem for getting fields ready for play, especially in early spring.

To make conditions more complex, the thatch was measured by Potchak to be as deep as 1 1/2 inches. Since the soil “clay based,” it created drainage problems as well. In the summer, the fields were drying out and “browning up.” Potchak and his predecessors had tried aggressive fertilization programs and top-dressing. More recently, Potchak had used core aeration and seeding technique with mixed results.

Searching for better results, Potchak started a deep-tining, slicing/spiking technique, cultivating the soil to a depth of 6 1/2 inches. He used a slicing aerator pulled by a tractor weighed down by sandbags to ensure the depth to “tear” up the turf. He was ready to try extreme measures to make these fields playable, especially for spring baseball.

Potchak decided give core aeration and “DryJecting” a chance. The DryJect machine can inject 10 tons per acre of dry materials while aerating. Following a blast of water into the turf, the DryJect aerates three dimensionally, side to side, and front to back, and injects flowable dry amendments. In Potchak’s case he injected Axis (diatomaceous earth) into the deep channels created by the machine. The entire process leaves the surface playable with minimal disruption.

In the first application, Potchak and Mike Nati, the local DryJect franchisee, used a 3 x 3-inch spacing to reduce thatch. The DryJect created channels of Axis about 4 inches deep. Following the DryJect process, when Potchak core aerated he could see that the cores were actual soil versus thatch cores as he had previously seen. Potchak’s plan is to modify his soil structure targeting for 3.5% Axis composition.

The DryJect process helped get more water into the subsurface and improved field drainage. Potchak has also seen improved root depth beyond the depth of the core aeration process. By using Axis, Potchak created more infiltration, less compaction, and improved the overall cultural environment of the turf plant.

Even though Potchak admits that there is some thatch left, he says, “The DryJect process is more of a bargain that you can expect.”

Gaul Advertising, Wayne, PA, provided this article. They can be reached at 610 225 0761.