Maintaining intensively manicured turfgrass during the summer months, whether it is an athletic field or golf tee or green, becomes a real challenge due to a complexity of problems that have the potential to cause the turf to develop stress. Around 1993 and 1994 several highly respected researchers referred to a decline in bentgrass golf greens as "summer bentgrass decline," to which no single pathogen was ever attributed. It was suggested that a correlation existed between Lanzia, Rhizoctonia, Magnaporthe poa, Anthracnose, and Phytophthora diseases as being the main culprits to the decline of turf during summer months.

There is no doubt that these diseases can become a serious problem during the summer, and will cause turf to decline. We suggest, however, that there are other underlying causes that cause turf to decline at this time of the year, and that the diseases that can be attributed to the decline of the turf are the end results. We also believe that most causes can be prevented.

Probably the number one cause of turf decline in the summer months is a result of free radical damage in combination with high soil and air temperatures. Just what are free radicals? Typically, stable molecules contain pairs of electrons. When a chemical reaction breaks the bonds that hold paired electrons together, free radicals are produced. Free radicals contain an odd number of electrons, which makes them unstable, short-lived, and highly reactive. As they combine with other atoms that contain unpaired electrons, new radicals are created, and a chain reaction begins.

The next question is, What causes these molecules to become unstable? The most common one would be the one that turfgrass managers do the most, mow. Mowing is a destructive process that wounds grass plants and increases the susceptibility of grass plants to other stresses. Formation of reactive oxygen species is a typical response of plants to wounding. The obvious prevention method would be to constantly check to make sure that blades, reels, and bedknives are as sharp as possible.

Other stresses that lead to the development of free radicals are environmental, such as drought, heat, and ultraviolet light, or chemical, such as herbicides. These stresses cause the reactive oxygen molecules hydrogen peroxide, superoxide, singlet oxygen, and hydroxyl radicals that can damage lipids, proteins, and DNA inside cells.

At supraoptimal temperatures, photosynthesis is extremely sensitive and is the first metabolic process that is damaged. High temperatures possibly cause an imbalance between photosynthesis and respiration processes and carbohydrate depletion, particularly for turf that is mowed daily at a low mowing height, such as golf greens.

Low mowing when temperature is high during summer imposes additional stress on the turf by removing large amounts of leaf area that are used for photosynthesis, while respiration continues. Not only are metabolic processes reduced at high leaf temperatures, but also moisture stress, from increased transpirational losses, results in stomatal closure, which decreases the supply of CO2 to the chloroplasts slowing photosynthesis. Under optimum temperature conditions, however, plants maintain a balance between producing and scavenging active oxygen species.

Prevention

What can you do about free radical damage affecting turfgrass? One idea is applying biostimulants because of their antioxidant properties. Various biostimulant products on the market contain a-tocopherol and ascorbic acid. When these two antioxidants become concentrated in the chloroplast they protect the photosynthetic apparatus photosystem II when plants are subjected to environmental stresses by scavenging excess reactive oxygen species. Another benefit of biostimulants is their hormone containing property of cytokinins that is found in seaweed extract from ascorphyllum nodosum, a known growth hormone that promotes cell division. Thus, the plant not only receives antioxidants to combat free radicals, but also has a propensity for deeper root growth, as long as some other factors are dealt with which will be discussed later.

Many researchers over the years have demonstrated the positive effects plants receive from the application of biostimulants containing cytokinins. Turfgrass managers must, however, use caution that they are not applying cytokinins when cytokinin content is operating at a normal level since the addition of cytokinin applications at these times have actually been found to be detrimental. It will vary from region to region, but given a normal year, we in northwest Ohio typically apply them from mid-May until the second week of September.

Humic acids are another compound that has shown to contain antioxidant properties, which promote the scavenging of free radicals. The other benefits of humic acids are that they have also increased the availability of micronutrients, phosphate, and potassium, and enhance the chlorophyll content of plants.

Several nutrients seem to also play a key role in preventing turf decline during the summer months, including calcium, which along with cytokinins, plays an essential role in cell division and elongation. Heat tolerance with the use of calcium is known to exist, but is still unclear as to how it is regulated. Some suggest that it may be involved in signal transduction, and gene expression under oxidative and heat stress. Others have found that calcium increases antioxidant enzyme activities and reduces lipid peroxidation of cell membranes. Calcium has also been shown to regulate guard-cell turgor and stomatal aperture. Although no research has shown calcium to prevent pythium, it has been demonstrated to possibly reduce the severity of...
Pythium by inhibiting the activator of pectolytic enzymes, thus, protecting the cell walls.

Silicon is another nutrient that has shown great promise in the past 3 years as a stress-preventer. This is most likely due to three factors. First, when silicon is present in leaf tissue the concentration of sodium in the leaf tissue is decreased by up to 50%. Second, when silicon is present in the plant tissue it prevents physical penetration by some insects and makes plant cells less susceptible to enzymatic degradation by fungal pathogens. Third, structural functions of silicon include compression resistance in cell walls, which increases traffic resistance.

Potassium is another vital nutrient in helping combat summer turf decline, and is probably one of the most underused nutrients in the turf industry. Its greatest attribute is that it helps strengthen cell walls inside the plant, which in turn allows the plant to hold up to traffic better, tolerate extreme heat, and help the plant require less water. Keep in mind, however, that potassium can have a negative effect on Magnesium if used in excessive amounts. As an example, we generally foliarly apply 1110 of a pound of potassium every 2 weeks during the summer months using Floratine's 4-4-16 Tiger Turf, and then use PhlexMag at a .75 ounce per 1,000 sq. ft. rate every 2 weeks.

Although not considered an antioxidant, amino acids play a key role in the prevention of summer decline. This can be attributed to at least three functions, possibly more, that amino acids impart on the plant: osmotic adjustment, water-stress tolerance of plants, and helping prevent chlorophyll degradation. Chlorophyll breakdown occurs to an oxygenolytic opening of the porphyrin caecorcycle of pherephorbide (pherie dce a) followed by a reduction to yield a fluorescent chlorophyll catabolite. This step is comprised of the interaction of two enzymes, pherie a deoxidase and red chlorophyll catabolite reductase.

Although we haven't seen any published research on it, we have experimented with on our greens the past 2 years with excellent results by applying an amino acid product called ProteSyn from Floratine every 2 weeks; we then add an application of Nutramax's MacroSorb Foliar on a bi-weekly rate. We either apply the MacroSorb Foliar with a fungicide to allow it to get into the plant easier if we are applying one, or apply it by itself. We feel that it is important to keep amino acid levels up during the summer because photosynthetic rates are generally lower during this time, and amino acids are known to help play a key role in photosynthesis.

Another amino acid product we have found very beneficial on our golf greens and our football field comes from the application of Nature Safe's organic fertilizers. We use Nature Safe for four reasons: its high amino acid content, its extremely low sodium index, its slow release form of nitrogen so that we get no surge growth, and finally, is its well documented ability to increase microbial populations that aid in triggering the plants' own defense mechanism in fighting off fungal pathogens.

Phosphorous is another key nutrient in the summer that becomes critical. Why? Because phosphorous is a required nutrient for plant health, but there are several
products available that can be used instead of the fungicide Aliette in the prevention of pythium. We use a product from Helena Chemical called Elemax Super Foliar Phosphite. There are several other foliar phosphorous containing products that will work as well. We not only get pythium prevention protection, but the plant also gets the nutritional benefit, and it is a lot cheaper per 1,000 square feet versus Aliette.

Manganese serves many functions within the plant, but the two most critical for summer decline prevention are the important process it plays in helping develop chlorophyll, and the second being the proper development of respiratory enzymes. As stated earlier, respiratory rates become higher in the summer, which also has a negative effect on carbohydrates.

Need oxygen
Another critical process in helping to avoid summer turf decline is keeping a good supply of oxygen in the soil. This is best done through various types of aeration. Aeration also allows for gaseous exchange, water movement through the soil profile, reduction of compaction and thatch, providing oxygen to promote greater microbial function, as adequate soil-oxygen levels are extremely important for soil micro-organisms, and controlling the amount of organic matter accumulation.

We use various forms of aeration techniques throughout the year on our golf greens. We try to get some form of oxygen down to our roots monthly from April through October. In April and May we use 7-inch bayonet tines due to their surface area and their ability to get down that far. In June, July, and August we use 5-inch needle tines. These cause no more surface disruption than a hydroject aeration.

Once they have been mowed you can’t even notice that it has been done. Obviously if it is extremely hot, dry, or both common sense tells us to hold off until conditions are conducive to performing it. In this region of the country there is usually at least a 1-2 day window of opportunity to do this. We also perform one hydroject aeration in July and August.

In the fall we core aerify with hollow tines, remove the cores, and topdress them to fill the channels in, then fertilize them with a granular fertilizer to start building up carbohydrate reserves for the winter. On our athletic fields we core aerify as opportunities present themselves based on field use and weather conditions. This past season we were able to core aerify the football field six times, five times before the start of games, and once during the season. We were also able to deep till the field during the season once using 10-inch solid tines. If we experience a very hot summer then we use 5-inch slicing knives on the athletic fields to keep oxygen in the root system.

One important process that we do every year before we make any kind of application that is extremely important is soil testing. It is absolutely imperative that you find out what nutrients are available from the soil, and which ones are tied-up in the soil. Whichever nutrients are not available then they need to be addressed as to why they are not so that necessary soil amendments can be applied to improve their availability, which, in most cases, is going to take time, perhaps several years, to improve them. The chosen method for bypassing nutrient unavailability is to apply nutrients foliarly.

These are some of the practices that we have used to help prevent summer decline, strengthen overall root systems, and improve plant health. The past 2 years we have only had to hand syringe our greens once, which has to be a direct correlation to the health of our greens. This past summer (2004) we consistently had 12-14 inch roots on our golf greens in June, July, and August, and 11-12 inch roots on our football field. We were able to cut our fungicide applications by half as compared to previous years on our golf greens, and made only two fungicide applications during the summer on the football field. This year we plan on cutting our fungicide applications by half as we normally would apply on our greens. Root systems can grow during summer months instead of experiencing root dieback, which can be a common problem typically encountered during this time of year.

Jeff Haag is Head Groundskeeper and Golf Course Superintendent at Bowling Green University in Ohio. He can be reached at jhaag@bgsu.edu.