Insect Damage and Monitoring Techniques

Turf insects can be among the most troublesome problems faced by sports turf managers. These pests feed on turf roots and can destroy an entire field in a relatively short period of time. Recognizing insect problems is the key to avoiding the serious turf damage they can cause. Early detection along with cultural, biological and chemical controls can help prevent turf loss and keep the field in top playing condition.

White Grubs: Use a shovel or spade to cut three sides of a square in the turf anywhere from six to 12 inches on a side and three to four inches deep. Flip the sod back on the uncut (fourth) side and use a hand trowel to dislodge soil in the soil/thatch interface. The cream-colored grubs will be very visible against the dark soil background.

Place grubs in a container and count them after removing all of them from the sample area. Convert the area to square feet (e.g., six-inch sides = 0.25 square feet). Note that a standard cup cutter is equivalent to 0.1 square feet. Take a number of samples and then average the number of grubs found. For ease in averaging, make all sampling cuts the same size.

Damage from white grubs resembles drought stress initially, with general thinning of turf, yellowing or both. In some circumstances, skunks or raccoons may tear apart turf in infested areas to feed on grubs near the surface.

Approximate threshold (or "acceptance") levels have been devised to treat insects per square foot. For white grubs (Japanese beetles and similar species) the threshold level is six to ten insects per square foot. Insecticides used to control the bugs include bendiocarb (Turcam), carbaryl (Sevin), chlorpyrifos (Dursban), cyfluthrin (Tempo), diazinon, fluvalinate (Mavrik), isazofos (Triumph), isofenphos (Oftanol) and propyl thiophosphorate (Aspon).

Comments: Populations are highest in fine fescues and thick thatch. Use an endophyte-containing cultivar when it is available and avoid drought conditions. Spray in June, and water lightly (1/10 inch) after applying the insecticide. In some cases a second application two to three weeks later may be needed.

Sod Webworms and Cutworms: Prepare an irritating drench by mixing one fluid ounce of lemon-scented dish detergent in one or two gallons of water. Use

continued on page 32
Damage usually begins as small, discrete brown patches that can coalesce into large areas of damage. A finger inspection of the infested area sometimes will reveal burrows lined with green frass (insect excrement). Cutworms are often active around aerification holes.

No good estimate is available on the approximate threshold levels for these insect pests. However, insecticides such as carbaryl (Sevin), chlorpyrifos (Dursban), cyfluthrin (Tempo), isazofos (Triumph) and trichlorfon (Proxol, Dylox) are used to treat both sod webworms and cutworms. Bendiocarb (Turcam) and fluvalinate (Mavrik) also are used for controlling sod webworms.

Comments: Check for sod webworm activity by looking for small green pellets in the upper thatch or flushing an area with soapy water. Watch for webworm moths flying at twilight. Apply controls ten to 14 days after the number of moths declines sharply. Repeat applications might be needed. Treat as late in the day as possible and water lightly (1/10 inch); do not mow for one to three days after an application.

Most cutworms are nocturnal, so treatments are most effective later in the day. Inspect aerification holes throughout the summer: The adult moths often lay eggs in holes. Apply two to four weeks after moth flight reaches its peak.

Annual Bluegrass (Hyperodes) Weevils: Use a cup cutter or similar device to collect cores of four to six inches in diameter. Loosely break up the soil in the cores and place the loosened soil and all plant matter in a dishpan or similar plastic container. Fill the container with luke-warm water and wait about five minutes. All stages except eggs will float to the surface of the water, where they can be counted.

The most severe damage normally occurs in early June and again in late July, with moderate damage at other times of the summer as well. Damage begins as small yellow patches, often along the edges of fairways or on collars, and spreads into large areas. Severely damaged areas take on a water-soaked appearance. Damage is restricted to short cuts (fairways and shorter) of annual bluegrass.

The approximate threshold level for the weevils is 30 to 50 per square foot. These insects are combated with chlorpyrifos (Dursban), isazofos (Triumph) and isofenphos (Oftanol).

Comments: Treat between forsythia and flowering dogwood “full bloom” (usually late April to mid-May). Treat for the second generation of the bugs if necessary during the first two weeks in July. Water lightly (1/10 to 1/5 inches).

Bluegrass Billbugs: Look for evidence of damage along the edges of paved areas in mid- to late July. Larvae can be found by digging into the root/thatch interface with a hand trowel and inspect-
Bluegrass billbug-infested areas begin to wilt but do not respond to watering. As larvae feed in the stems and on the roots, damaged turf can be tagged loose with very little force. Infested areas will brown out entirely in a matter of several days. Damage is usually most severe in late July and early August.

The approximate threshold level is five to ten billbugs per square foot. The insect can be controlled with insecticides such as carbaryl (Sevin), chlorpyrifos (Dursban), isazofos (Triumph) and isofenphos (Oftanol).

Comments: One application to a newly mowed turfgrass in June when adult billbugs are active in an area. Check the adjacent pavement. Water lightly (1/10 to 1/5 inches).

Threshold Levels

The key to any integrated pest management program is identifying threshold levels. No single magic number will be appropriate for all turf managers.

Several agronomic factors will have a direct effect on the number of insects a turf area can tolerate. Some of these factors include the species of turfgrass, the height of cut, availability of irrigation (and resulting soil-moisture distribution), use patterns (including traffic and other sources of compaction) and general fertility programs. The thresholds presented in the table are for nonirrigated turf. In most cases, irrigated turf can sustain higher populations without showing stress. Threshold levels will depend on the overall vigor of the turf being managed.

Biological Controls

Milky Spore: Milky spore is a disease caused by a bacterium (*Bacillus popilliae*) that affects the digestive system of Japanese beetle grubs. It is ineffective against other species of grubs and is relatively nontoxic to people and other “nontarget” organisms. It is available commercially (Doom, Grub Attack and Japidemic, among others) and can be applied to Japanese beetle grub-infested turf.

Endophytic Grasses: Some grasses contain endophytes, fungi that grow inside the plants. These endophytes seem to provide some level of resistance to chinch bugs, bluegrass billbugs, sod webworms and cutworms. Currently, endophytes have only been incorporated into some cultivars of fescues and perennial ryegrasses. Individuals who are capable of renovating turf areas should consider using endophytic cultivars to reduce stress from surface-feeding insects.

The above article was excerpted from the Professional Turfgrass Management Guide published by the University of Massachusetts Cooperative Extension System.

Chemical Log

continued from page 32

For Product Info Faxed to You Now! DIAL: 1(800) 817-1889

Get Serious With STMA

Application for Membership

The Sports Turf Managers Association (STMA) is an organization of professionals representing all segments of the sports turf industry. Our members work to combine the science of growing grass and the art of maintaining sports turf to produce playing fields that are both safe and aesthetically pleasing.

STMA provides members with a variety of benefits, including: Education through regional institutes and conferences; support for sports turf research; facilities tours; a national awards program; access to the STMA National Conference and Exhibition; complimentary subscriptions to *Sports Turf Manager* and *SportsTURF Magazine*; and much more.

If you’re serious about the sports turf industry, then it’s time to become a member of STMA. Join today!

Member Information

- **Name:**
- **Title:**
- **Employer:**
- **Type of Business:**
- **Address:**
- **City**
- **State**
- **Zip**
- **Phone**
- **Fax**
- **Signature**
- **Referred by**

Membership Category (please check one)

- **Professional sports turf facility manager** $75
- **Two & four-year colleges and universities** $75
- **Other schools, research, ext. agents, teaching** $75
- **Park, recreation and municipal facilities** $75
- **Student** $20
- **Commercial affiliate (U.S. or International)** $175
- **Additional members from same company** $45
- **International other than commercial affiliate** (must be in U.S. dollars) $75

Total amount enclosed $--

Please enclose payment (check or money order) and send to:

Sports Turf Managers Association
PO Box 809119
Chicago, IL 60680-9119

For more information, contact STMA Headquarters at 312/644-6610

“Promoting Better and Safer Sports Turf Areas”

Circle 131 on Postage Free Card