Subsurface Placement of Pesticides

By Patricia J. Vittum

Sometimes when turf managers use a pesticide and it does not come up to expectations, they think the material has “failed.” In fact, there are many circumstances when the material was not used appropriately—for any number of reasons.

The actual cause(s) of poor results could be the wrong rate, the wrong time of year or even the wrong time of day, the wrong use of water before or after the application, the wrong material for the pest, or the wrong formulation for the conditions.

For example, one insect pest that causes headaches to turf managers is the white grub. In the damaging stage, the white grub is active at or below the soil-thatch interface. For the insecticide to be effective, grubs must come in contact with it. To accomplish this, insecticides that are applied to the turf surface must be moved down into the thatch or the grubs must be drawn higher into the thatch. In most cases, post-application irrigation (or rain) is used to initiate that movement. Often, the water is not put on quickly enough after application or it is not put on in sufficient quantity to accomplish the job.

High Pressure Liquid Injection

The challenge faced by northern pesticide applicators regarding white grubs is virtually identical to that faced by southern pesticide applicators dealing with mole crickets.

Several years ago, engineers in the Southeast came up with a concept of using very high pressure and small nozzle tips to drive materials deeper into the thatch than a conventional surface application. They built a prototype “high pressure liquid injection” (HPLI) unit that was used to make applications on small research plots.

This unit’s delivery system included two independent two-foot-long booms with nozzles spaced three-inches apart. The booms rode directly on the ground with the nozzles projecting a few degrees above the turf surface. The booms were pressurized to create a high velocity jet that would bring the material deep into the thatch. They built a prototype “high pressure liquid injection” (HPLI) unit that was used to make applications on small research plots.

When it comes to hydroseeding or stolonizing your golf course we draw a fine line.

Actually, you draw a fine line on your course layout. We follow it. Exactly. Grass seed on one side, stolons on the other—whatever you specify.

To do it, we hydroseed from the ground. Use a spatterboard. No overspray, no wind drift, no blurry edges. We use multi-directional spraying techniques to give you total coverage. No “shadowing.” No skinny areas.

Our equipment, material and people? The best, bar none. Our field of operations? The U.S., Mexico, anywhere on the Pacific rim; wherever your golf course is. Our references? Some of the top names in golf course construction.

Whatever you need, from hydroseeding or stolonizing greens, fairways and roughs to revegetation, overseeding, fertilizing, straw mulching or erosion control, call us. Or drop us a line. We’ll follow it.

JOIN THE INCREASING NUMBER OF SATISFIED PROFESSIONALS WHO USE THIS NEW TIME-/WORK-/MONEY-SAVER TO CREATE BETTER FAIRWAYS AND ROUGHS. YOU’LL REDUCE OR ELIMINATE THOSE RISING GRASS CLIPPING DISPOSAL COSTS AT THE SAME TIME. WE’LL SHOW YOU HOW TO GET TWO JOBS DONE WITH ONE MACHINE IN OUR FREE BROCHURE. A NEW DEMO VIDEO IS AVAILABLE.

Call today. 717-355-2446 Fax 717-355-2272

MILL CREEK MANUFACTURING CO.
The Spreader Specialists
112 S. Railroad Ave.
New Holland PA 17557

Circle 115 on Postage Free Card

TWO FOR ONE!

That’s what you get with the new Millcreek 2 cu. yd. Model 75TD top-dresser equipped with a grass clippings dispersing attachment.

1. A superb topdresser with adjustable pattern.
2. The answer to your grass clippings problems.

Join the increasing number of satisfied professionals who use this new time-/work-/money-saver to create better fairways and roughs. You’ll reduce or eliminate those rising grass clipping disposal costs at the same time. We’ll show you how to get two jobs done with one machine in our free brochure. A new demo video is available.

Call today. 717-355-2446 Fax 717-355-2272

MILLCREEK MANUFACTURING CO.
The Spreader Specialists
112 S. Railroad Ave.
New Holland PA 17557

Circle 116 on Postage Free Card
forward of vertical. The nozzle tips were no more than 0.5 inches off the ground. The technology used in the research units is available on commercial units with up to 1,000-gallon tanks with 16-foot booms.

This unit was used to apply field trials testing control of mole crickets. Many of those trials were conducted under the direction of Dr. Pat Cobb at Auburn University in Alabama.

Preliminary indications were that the technique had tremendous potential and had many advantages over a conventional surface application. Environmentally, the surface exposure to pesticides was reduced considerably. One study on warm-season grasses showed that surface residues were reduced up to 90 percent. In addition, there was virtually no drift during the application because the nozzles rode close to the ground. In certain circumstances, the rate of application could be reduced 50 percent using HPLI and still provide the same level of control as a conventional application at the full rate.

There is at least one other kind of high pressure liquid injection equipment currently available. Like the equipment used for our trials, it does not slice the turf. This unit, available on a contract basis in parts of the Northeast, uses a computer-driven micro-plus system. The depth of penetration into the turf can be set by adjusting the length of each micro-pulse, the pressure, and/or the ground speed. The unit seems to be the “second generation” of HPLI and has lots of application possibilities.

Some golf course superintendents may be thinking that the Toro HydroJet unit might be used to deliver liquid insecticides below the surface. In fact, the HydroJet was not built for the purpose of applying pesticides, so the seals and delivery systems are not designed to handle pesticides. In addition, the purpose of the HydroJet is to shatter the soil structure using even higher pressures than the systems so far described.

Studies conducted by Dr. Harry Niemczyk at Ohio State University indicate that placing insecticides below the point where grubs are active is just as ineffective as not moving them down from a surface application. Placing materials as little as an inch below the thatch-soil interface results in their failure to perform.

Turf Slicing Systems

Another approach to subsurface placement of pesticides involves slicing the turf in a manner similar to an overseeder, and dropping the material into the slice. There are several companies working on variations of this theme, including large tractor-driven units and smaller walk-behind units.

In each case, the concept is the same—slices are cut in the turf, tubes deliver pesticides (through gravity feed) into the slice, and a plate “tucks in” the turf around the slice. There are at least two obvious advantages to such a system. First, there is no high pressure system with the inherent dangers of blown lines. Perhaps even more importantly, you can set the application depth very accurately—often within 1/8-inch. As a result, you can adjust the unit to handle the conditions of each given turf area.

Slicing units can deliver pesticides to areas with thick (more than one inch) thatch just as effectively as to areas with less thatch. The main drawback so far is that the slicing process does put out a lot of thatch. In a large operation, this “hay” must be disposed of to prevent the machine from clogging. Some of these units have liquid adapters so that they can be used to apply liquid formulations into the slices.

The technology of sub-surface placement of pesticides has expanded tremendously in the past couple years. It appears that the technique reduces surface exposure tremendously.

Environmental Concerns

Drift risk is reduced considerably with the HPLI technique. As a result, turf managers could make applications during mildly windy conditions when conventional applications would not be an option. In addition, subsurface application techniques may provide applicators with a longer window during which they can apply post-application water. Results of some of our trials suggest delays in post-application watering are less crucial in subsurface applications than in conventional.

Subsurface placement of pesticides is a technology whose time has come, particularly in areas of the country where environmental concerns are paramount.

Dr. Patricia J. Vittum is with the University of Massachusetts, Department of Entomology, Amherst, MA. The above article was reprinted from Cornell University Turfgrass Times.