In the past decade, the need for learning about water saving grasses has not changed, only intensified. The circumstances that have generated a growing interest in turfgrass water use include: droughts in many areas, increasing demands on a limited available supply, the increasing cost of available water, and a desire for lower maintenance ground covers.

In the past few months I have seen the following water-related news in turf industry publications:

1) A map of the U.S.A. showing areas of moderate to severe droughts covering much of the United States.
2) An article on Las Vegas showing a tripling of population with the same water rights on the Colorado River.
3) A discussion of the cost of utilizing storm run off or effluent on golf courses in California.
4) Numerous articles on buffalograss, zoysiagrass, and Bermudagrass which have better cold tolerance and can be used in many other areas of the United States.

The most important development in recent research is that turf water use can be reduced not only by changing the species of grass planted, but by changing the management and the perception of how the turf should look. Much of the water usage of grass is not due to the needs of the grass but due to people. Superintendents and sports turf managers need to analyze each turfgrass situation to determine how the grass will be used, time of year it will be utilized, turf density necessary, irrigation to be practiced, necessary appearance and environmental conditions before selecting a species and variety of grass to be planted. Many species that have reduced water requirements and/or drought avoidance have winter or summer dormancy periods which may make them unacceptable for some uses. Others may not form the density of turf necessary for heavy use areas but be very acceptable for roughs or other low use sites.

In order for any grass to save water turf managers must modify their irrigation practices and water to the needs of the grass and not by the clock.

Warm-season grasses typically have lower water needs than other species. Although use of many of these species is limited to the extreme southern United States, certain varieties of buffalograss, zoysiagrass and Bermudagrass have better cold tolerance and can be used in many other areas of the United States.

The search for water saving grasses continues.

By Leah A. Brilman, Ph.D.
Water Saving Grasses
continued from page 7

In evaluating cool-season grasses for reduced water use, the climate of the region and pattern of water demand must be considered. In certain areas of the country, water is also used to cool these grasses during summer, so it is not just the water use rate that must be considered.

Tall fescues are known as drought resistant turfgrasses but actually utilize more water (have a higher evapotranspiration or ET rate) than many other cool-season grasses. Their major advantage is their deep root system that allows them to extract water from a much larger soil profile and thus avoid drought. Eventually that soil profile has to be refilled by water through rainfall or irrigation or the plants will go dormant.

In the Pacific Northwest and other areas with only short periods without rain-

fall and extensive rainfall during other times, tall fescue will stay green all year with no irrigation. Many of the dwarfer types of tall fescue have roots as deep as standard types with reduced rates of top growth and lower clipping yields. Some have shallower roots. These types may be useful in reducing maintenance at some sites and areas of the country.

Dr. Robert Carrow of the University of Georgia recently noted that in warm humid regions, ET rates are often not the primary determinant of drought tolerance, since most species show low ET rates in these areas. The key determinant of drought tolerance is actually acid soil tolerance since many of these areas have a very acid subsoil. This subsoil prevents deep root penetration of grass varieties and species without acid tolerance and thus limits their water supply.

---

Sweet vernalgrass next to perennial ryegrass (foreground) at the University of Rhode Island.

---

TRIPLE PLAY

THE CHOICE OF PROFESSIONAL GROUNDSKEEPERS FOR OVER 25 YEARS TO HELP ELIMINATE RAIN DELAYS AND REDUCE INJURIES

TURFACE® Regular for Skinned Areas
Absorbs water and prevents puddles
Reduces compaction for a smooth cushioned playing surface
Retains moisture to alleviate dusting and blowoff

TURFACE® Plus for Turf Areas
Provides excellent aeration and drainage
Retains moisture and nutrients
Improves soil texture for root development

TURFACE® Quick Dry for Spot Maintenance
Absorbs standing water quickly
Long lasting — will not cake, harden or blow away
Helps prevent future rain delays

For more information, call 1-800-654-8793 (in Illinois 708-940-8700)
STMA Member

---

Circle 103 on Postage Free Card
Kentucky bluegrasses have a lower ET than tall fescues, with considerable variation in both species, but their root system is not as deep. When they are irrigated in arid or semi-arid regions they will often utilize less water and, if allowed to go dormant, often show better recovery.

The results of the National Turfgrass Evaluation Program should be used in deciding which variety is appropriate to use in low maintenance situations. Look for results under non-irrigated conditions in similar environments or local turf trials without irrigation. Among the varieties that have shown good performance in no irrigation sites in the current National Trial are Wabash, Asset, Julia, A-34, Mystic, Freedom, Monopoly, Georgetown and Joy. Additional varieties showed good performance in at least one site.

ET rates are often not the primary determinant of drought tolerance in warm humid regions. The key determinant is actually acid soil tolerance.

The fine-leaf fescues in general have low ET rates and methods of conserving water such as leaf rolling. As a result, they demonstrate a great deal of drought tolerance and have low water use. They do not root as deeply as some other species and will go dormant without irrigation during extensive droughts. You will often find fine fescues persisting on many old turf sites that have never been irrigated or fertilized.

In 1988, 11 midwestern universities established a Regional Alternate Species Trial to identify low maintenance grass species that can be used on large areas for cover. These trials received only broadleaf weed control and no fertilization or irrigation after establishment.

In the first two years of this trial, two fine fescues, sheep fescue and 'Durar' hard fescue, were two of the best performers. In addition, blue fescues are often found in turf sites that have received the lowest inputs and were not included in this trial. Improved hard fescues, especially those with endophytes, have shown the best performance at non-irrigated sites in the National Test. In both tall fescues and fine fescues, the presence of the endophyte appears to provide benefits under drought conditions by contributing to osmotic adjustment and better rooting.

The other species that performed well for two years in this Alternate Species Trial included ‘Alta’ tall fescue, ‘Exeter’ colonial bentgrass, and ‘Reton’ red top. The excellent performance of colonial bentgrass shows the common perception of it only as an appropriate species for the Pacific Northwest and New England is incorrect.

The USGA/GCSAA is currently supporting a colonial bentgrass breeding program utilizing breeding material from non-irrigated, low-input fairways of golf courses in hot, dry regions of New Zealand. The goal is to expand on the potential of this species under low maintenance conditions.

continued on page 12
Water Saving Grasses
continued from page 11

Further research needs to be done on the utilization of colonial bentgrass. Unfortunately, the primary testing sites are evaluating this material under standard fairway maintenance situations. It needs to be evaluated for low maintenance fairways, roughs and lawn situations. Red top and other native Agrostis species also need to be evaluated further.

There are many additional species of grasses that show potential or have been utilized for situations with low water availability. Canada bluegrass has shown excellent potential in some situations. The primary problem is its extreme steminess in the spring. Texas bluegrass also has potential for many areas, and crosses of these, and other Poa species, with Kentucky bluegrass may provide varieties with lower water needs.

Considerable progress has been made in breeding and in understanding water use during the past decade.

Sweet vernalgrass (Anthoxanthum odoratum) is found extensively in pastures and low maintenance sites. Selections of this species for improved density and color may also make a pleasing low maintenance grass, with its sweet smell an added bonus.

Other native species that need to be examined more closely include species of Deschampsia, Muhlenbergia, and Festuca.

Turfgrass remains practical for probably every site where it is desired. Some sacrifices may have to be made at certain sites, including letting the grass go dormant during part of the year and accepting less density. In other areas, irrigation scheduling will have to be done carefully based on the ET rates of the grass in conjunction with the evaporative demands of the location.

Considerable progress has been made in breeding and in understanding water use during the past decade. The challenge of the next decade is to put the results of this research into widespread use.

Dr. Leah Brilman is research director for Seed Research of Oregon in Corvallis, OR.