Olsen Field
continued from page 20

ornaments in August. The baseball season ends in early October with the Aggies’ 30-day fall practice. All these events are played on the Tifway bermudagrass.

In a typical season, Olsen Field hosts nearly 60 games and all the practices for the university. “I’d love to have a practice facility for baseball,” says Goertz. When he is not taking care of the stadium, Goertz is helping Ray with the girls softball field, the practice football field and the track complex. The girls have been national fast-pitch softball champions for three out of the past eight years.

Kyle Field, the university’s football stadium, is artificial turf. When the baseball team needs to practice on artificial turf, it borrows the football stadium for a few days.

A $7-million indoor practice facility will be constructed within the next five years. But Goertz has grown up with Olsen Field and natural turf. “I’ve been lucky to start out on a new field and stay with it,” he says. Experience has taught him how to adjust the Toro hydraulic irrigation system during the season for both ryegrass and bermudagrass. He may change the irrigation schedule for the 23 stations from week to week.

Each station has an average of three heads that run about 20 minutes every three days. There are five quick couplers on the field to which hoses are connected for wetting down the infield dirt, bullpens and warning tracks. The first is behind the pitcher’s mound. Two more are located next to the bullpens and the final two are located in the outfield. “If we had a power failure in the middle of a hot spell, we could still irrigate the field with the quick couplers,” states Goertz.

Channel Drains

A revolution in turf and landscape drainage is quietly taking place. For lack of a better name, we’ll call the products causing this revolution channel drains. They use a variety of different products to achieve a similar result: a deep, narrow channel in the soil which carries water away from a site.

The channel shape of the drains relieves some of the problems with achieving an exact slope to make water flow properly. For example, a four-inch pipe buried beneath the surface has only a four-inch tolerance in slope to make sure water will flow properly. Water and silt will collect in any low spot in the drain line. In agriculture, and in large sports turf installations, laser-guided trenchers use expensive instrumentation to provide the precise slope necessary for the drain.

The problem is that many facilities with poor drainage are reluctant to install drainpipe, for fear of the high cost of installation or problems with slope if they do the work themselves. Two solutions were devised to help open up in-house installation to a greater number of institutions and to contractors who do not have the sophisticated equipment.

The first was to install a channel of rock, pea gravel or sand in the trench above the pipe to increase the tolerance of the slope. This also improved the downward percolation of water to the pipe and assisted the horizontal movement of water above the pipe. This type of installation is termed a French drain.

British sports turf contractors took the channel concept one step further. They utilized a series of vibrating blades to open up narrow slits in the top foot of soccer pitches, inserted a small perforated pipe, and then backfilled the slits with sand to the surface. Water flowed in the sand channels much more effectively than through heavy soils.

The advantage of this system, called the Cambridge System, was minimal surface disturbance. Adding a layer of sand to the surface of the area being drained increased water movement to the sand slits in what is termed a “wicking action.”

The next problem was preventing waterborne silt from plugging both the drainpipe and the rock or sand above the pipe. Geotextile fabrics were wrapped around the pipe,